Answer on Question \#78458 - Math - Algebra Question

Show that

$$
1+1 / \sqrt{ } 2+\ldots+1 / \sqrt{ } n \geq \sqrt{2} /(n-1) \text { for } n \in N, n>1
$$

Solution

Induction method:

$$
\begin{aligned}
& \text { for } n=2: 1+1 / \sqrt{2} \geq \sqrt{2} \\
& \sqrt{2}+1 \geq 2 \\
& \sqrt{2} \geq 1 \text {, }
\end{aligned}
$$

which is true,
and if

$$
1+1 / \sqrt{ } 2+\ldots+1 / \sqrt{ } n \geq \sqrt{2} /(n-1)
$$

Then we have to prove that

$$
1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}} \geq \frac{\sqrt{2}}{n+1-1}=\frac{\sqrt{2}}{n}
$$

Proof
Since

$$
1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}} \geq \frac{\sqrt{2}}{n-1}
$$

and

$$
\frac{\sqrt{2}}{n-1} \geq \frac{\sqrt{2}}{n}
$$

Then

$$
1+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}} \geq \frac{\sqrt{2}}{n-1} \geq \frac{\sqrt{2}}{n}
$$

which was to be proved.

