Answer on Question \#78434 - Math - Complex Analysis Question

Apply De Moivre's theorem to write $(\sqrt{ } 3+i)^{\wedge} 5$ in the form $\mathrm{a}+\mathrm{ib}$, with $a, b \in R$

Solution

$$
\begin{aligned}
& z=\sqrt{3}+i=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) \\
& z^{5}=2^{5}\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)=32\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)=-16 \sqrt{3}+16 i
\end{aligned}
$$

