Condition: Apply the Gaussian elimination process to determine the value of lembda for which the following linear system is consistent: $x-3 y+4=0,3 x-$ $2 y=l e m b d a, y=6-2 x$?

Solution:

Firstly, let us transform the form of the given equations to normal form.
$\left\{\begin{array}{c}x-3 y=-4 \\ 3 x-2 y=\lambda \\ 2 x+y=6\end{array}\right.$
Now, create augmented matrix of the given system.
$\left(\left.\begin{array}{cc|c}1 & -3 & -4 \\ 3 & -2 & \lambda \\ 2 & 1 & 6\end{array} \right\rvert\,\right.$
Where the first column is coefficients of the variable x , the second is coefficients of y.

Then, using the Gaussian method of elimination, let us find our solution.

1) In the first step we compose the first linear equation and -3 , then the result we add to the second linear equation. After we again compose the first linear equation and -2 , then the result we add to the third linear equation.

The result of the first step is:
$\left(\begin{array}{cc|c}1 & -3 & -4 \\ 0 & 7 & 12+\lambda \\ 0 & 7 & 6\end{array}\right)$
2) In the second step we compose the third linear equation and -1, then we add result to the third second equation

The result of the second step is:
$\left(\begin{array}{cc|c}1 & -3 & -4 \\ 0 & 0 & 6+\lambda \\ 0 & 7 & 6\end{array}\right)$
3) Let us analyze the second equation. For doing that, rewrite it in the normal form of the equation:
$0 * x+0 * y=6+\lambda$
So, this equation will be right if $\lambda=-6$ and because of that linear system will be consistent.

If take different value of λ, then we will get this $0+0=k$, where $k \neq 0$. This mean that there is no x or y that satisfy this equation. Because of that system will be inconsistent.

Answer: $\lambda=-6$;

