Question 1. Suppose S is a nonempty open set that isn't the whole real line. Show that there is a sequence of elements of S that converges to an element of $C(S)$.

Solution. Take $x \in S$ (we can do this, because S is nonempty). Since S is open, there is an open interval $(x-\varepsilon, x+\varepsilon) \subset S$ for some $\varepsilon>0$. Set $\varepsilon_{0}=\sup \{\varepsilon>0 \mid(x-\varepsilon, x+\varepsilon) \subset S\}$. Note that $\varepsilon_{0}<\infty$, since otherwise $S=\mathbb{R}$. Then either $x-\varepsilon_{0}$ or $x+\varepsilon_{0}$ does not belong to S. Indeed, otherwise we can find an open interval in S, which contains $\left(x-\varepsilon_{0}, x+\varepsilon_{0}\right)$ and thus ε_{0} is not maximal. Let $x-\varepsilon_{0} \notin S$ (the case $x+\varepsilon_{0} \notin S$ is similar). Let $N \in \mathbb{N}$ be a positive integer such that $\frac{1}{N}<\varepsilon_{0}$. Then $\frac{1}{N+n}<\varepsilon_{0}$ and thus $x_{n}=x-\varepsilon_{0}+\frac{1}{N+n} \in S$ for all $n \in \mathbb{N}$. Finally note that $\lim x_{n}=x-\varepsilon_{0} \notin S$, i. e. $\lim x_{n} \in C(S)$.

