Question 1. Prove if $|x_n - L| \le b_n$ and $\lim b_n = 0$, then $\lim x_n = L$.

Solution. Note that $|x_n - L| \leq b_n$ implies $b_n \geq 0$. Since $\lim b_n = 0$, for each $\varepsilon > 0$ there is $N \in \mathbb{N}$ such that $0 \leq b_n < \varepsilon$ for all n > N. Then $|x_n - L| \leq b_n < \varepsilon$ for all n > N. By definition this means that $\lim x_n = L$. \Box

1