Question 1. Prove if $\left|x_{n}-L\right| \leq b_{n}$ and $\lim b_{n}=0$, then $\lim x_{n}=L$.
Solution. Note that $\left|x_{n}-L\right| \leq b_{n}$ implies $b_{n} \geq 0$. Since $\lim b_{n}=0$, for each $\varepsilon>0$ there is $N \in \mathbb{N}$ such that $0 \leq b_{n}<\varepsilon$ for all $n>N$. Then $\left|x_{n}-L\right| \leq b_{n}<\varepsilon$ for all $n>N$. By definition this means that $\lim x_{n}=L$.

