Answer on Question \#78301 - Math - Linear Algebra

Question

1a) what would be the gradient of a line parallel to the straight line

$$
3 x-y+4=0
$$

Solution

$$
3 x-y+4=0
$$

The equation of the straight line in slope-intercept form

$$
y=3 x+4
$$

The gradient of a line parallel to the given straight line is

$$
\operatorname{grad}=m=3
$$

Answer: 3.

Question

b) what would be the gradient of a line perpendicular to the straight line

$$
5 x-2 y-1=0
$$

Solution

$$
5 x-2 y-1=0
$$

The equation of the straight line in slope-intercept form

$$
y=\frac{5}{2} x-\frac{1}{2}
$$

If two lines are perpendicular

$$
\operatorname{grad}_{1} \cdot \operatorname{grad}_{2}=-1
$$

The gradient of a line perpendicular to the given straight line is

$$
\operatorname{grad}_{2}=-\frac{1}{\operatorname{grad}_{1}}=-\frac{1}{\frac{5}{2}}=-\frac{2}{5}
$$

Answer: $-\frac{2}{5}$.
2. State whether the following pairs of lines whose equations are given are parallel, perpendicular or neither.

Question

a. $2 x-y+4=0$ and $6 x-3 y+7=0$

Solution

$2 x-y+4=0$ and $6 x-3 y+7=0$
The equations of the straight line in slope-intercept form

$$
\begin{gathered}
y=2 x+4 \text { and } y=2 x+\frac{7}{3} \\
\operatorname{grad}_{1}=2=\operatorname{grad}_{2}
\end{gathered}
$$

Therefore, two lines are parallel.
Answer: two lines are parallel.

Question

b. $7 x+3 y-8=0$ and $3 x-7 y+1=0$

Solution

$7 x+3 y-8=0$ and $3 x-7 y+1=0$
The equations of the straight line in slope-intercept form

$$
\begin{gathered}
y=-\frac{7}{3} x+\frac{8}{3} \text { and } y=\frac{3}{7} x+\frac{1}{7} \\
\operatorname{grad}_{1}=-\frac{7}{3}, \operatorname{grad}_{2}=\frac{3}{7} \\
\operatorname{grad}_{1} \cdot \operatorname{grad}_{2}=-\frac{7}{3} \cdot \frac{3}{7}=-1
\end{gathered}
$$

Therefore, two lines are perpendicular.
Answer: two lines are perpendicular.

Question

c. $x+3 y-2=0$ and $3 x-y+4=0$

Solution

$x+3 y-2=0$ and $3 x-y+4=0$
The equations of the straight line in slope-intercept form

$$
\begin{gathered}
y=-\frac{1}{3} x+\frac{2}{3} \text { and } y=3 x+4 \\
\operatorname{grad}_{1}=-\frac{1}{3}, \operatorname{grad}_{2}=3 \\
\operatorname{grad}_{1} \cdot \operatorname{grad}_{2}=-\frac{1}{3} \cdot 3=-1
\end{gathered}
$$

Therefore, two lines are perpendicular.
Answer: two lines are perpendicular.
3. Find the equation of the straight lines

Question

a) Passing through the point $(3,-2)$ and parallel to the line $4 x-y+6=0$

Solution

$$
4 x-y+6=0
$$

The equation of the straight line in slope-intercept form

$$
y=4 x+6
$$

Two lines are parallel, then

$$
\operatorname{grad}_{1}=\operatorname{grad}_{2}=4
$$

The equation of new straight line in slope-intercept form

$$
y=\operatorname{grad}_{2} \cdot x+b_{2}
$$

$$
y=4 x+b_{2}
$$

This line passes through the point $(3,-2)$

$$
\begin{gathered}
-2=4(3)+b_{2} \\
b_{2}=-14
\end{gathered}
$$

The equation of new straight line in slope-intercept form

$$
y=4 x-14
$$

The equation of new straight line in general form

$$
4 x-y-14=0
$$

Answer: $4 x-y-14=0$.

Question

b) Passing through the origin and parallel to the line $5 x+3 y-7=0$

$$
\begin{gathered}
\text { Solution } \\
5 x+3 y-7=0
\end{gathered}
$$

The equation of the straight line in slope-intercept form

$$
y=-\frac{5}{3} x+\frac{7}{3}
$$

Two lines are parallel, then

$$
\operatorname{grad}_{1}=\operatorname{grad}_{2}=-\frac{5}{3}
$$

The equation of a new straight line in slope-intercept form

$$
\begin{gathered}
y=\operatorname{grad}_{2} \cdot x+b_{2} \\
y=-\frac{5}{3} x+b_{2}
\end{gathered}
$$

This line passes through the origin

$$
\begin{gathered}
0=-\frac{5}{3}(0)+b_{2} \\
b_{2}=0
\end{gathered}
$$

The equation of a new straight line in slope-intercept form

$$
y=-\frac{5}{3} x
$$

The equation of a new straight line in general form

$$
5 x+3 y=0
$$

Answer: $5 x+3 y=0$.

Question

c) Passing through the point $(-2,5)$ and perpendicular to the line
$3 x-2 y+8=0$

$$
\begin{gathered}
\text { Solution } \\
3 x-2 y+8=0
\end{gathered}
$$

The equation of the straight line in slope-intercept form

$$
y=\frac{3}{2} x+4
$$

Two lines are perpendicular, then

$$
\begin{gathered}
\operatorname{grad}_{1} \cdot \operatorname{grad}_{2}=-1 \\
\frac{3}{2} \cdot \operatorname{grad}_{2}=-1 \\
\operatorname{grad}_{2}=-\frac{2}{3}
\end{gathered}
$$

The equation of new straight line in slope-intercept form

$$
\begin{gathered}
y=\operatorname{grad}_{2} \cdot x+b_{2} \\
y=-\frac{2}{3} x+b_{2}
\end{gathered}
$$

This line passes through the point $(-2,5)$

$$
\begin{gathered}
5=-\frac{2}{3}(-2)+b_{2} \\
b_{2}=\frac{11}{3}
\end{gathered}
$$

The equation of new straight line in slope-intercept form

$$
y=-\frac{2}{3} x+\frac{11}{3}
$$

The equation of new straight line in general form

$$
2 x+3 y-11=0
$$

Answer: $2 x+3 y-11=0$.

