The position of an object moving along a line is given by the function $s(t)=6 t^{2}+36 t$. Find the average velocity of the object over the following intervals.
a) $[1,7]$
b) $[1,6]$
c) $[1,5]$
d) $[1,1$ plus $h]$ where $h>0$ is real number.

Solution:

General equations for the position of the body and its velocity for uniformly accelerated motion have the form:

$$
\begin{gathered}
s(t)=v_{0} t+\frac{a t^{2}}{2} \\
v(t)=v_{0}+a t
\end{gathered}
$$

where v_{0} - initial velocity and a - acceleration. From the condition of the problem it is seen that the initial velocity and acceleration are respectively equal to 36 and 12. Then

$$
v(t)=36+12 t
$$

The average velocity in the interval [t_{1}, t_{2}] for uniformly accelerated motion is equal to the average value between the initial and final velocities for a given interval.

$$
v_{\text {average }}=\frac{v\left(t_{1}\right)+v\left(t_{2}\right)}{2}
$$

or in this task

$$
v_{\text {average }}=\frac{36+12 t_{1}+36+12 t_{2}}{2}=\frac{72+12\left(t_{1}+t_{2}\right)}{2}=36+6\left(t_{1}+t_{2}\right)
$$

a) $v_{\text {average }}=36+6(1+7)=84$;
b) $v_{\text {average }}=36+6(1+6)=78$;
c) $v_{\text {average }}=36+6(1+5)=72$;
d) $v_{\text {average }}=36+6(1+1+h)=48+6 h$.

Answer:

a) $v_{\text {average }}=84$;
b) $v_{\text {average }}=78$;
c) $v_{\text {average }}=72$;
d) $v_{\text {average }}=48+6 h$.

