Answer on Question \#78050 - Math - Calculus

Question

A force $F=3 i-6 k$ acts along a line passing through the point $P(0,-1,4)$. Determine the torque about the point $Q(4,6,-1)$.

Solution

By definition, the torque is

$$
\vec{\tau}=\vec{r} \times \vec{F} .
$$

Here \vec{r} is the position vector of the point of application of force with respect to the point about which torque is to be calculated, \vec{F} is the force applied, $\vec{\tau}$ is the torque.

In our case, if Q is the center of rotation, and P is the point the force is applied, then $\vec{r}=\overrightarrow{Q P}$. Than we have

$$
\begin{gathered}
\vec{r}=\overrightarrow{Q P}=(0-4) \vec{\imath}+(-1-6) \vec{\jmath}+(4+1) \vec{k}=-4 \vec{\imath}-7 \vec{\jmath}+5 \vec{k} ; \\
\vec{F}=3 \vec{\imath}+0 \vec{\jmath}-6 \vec{k} .
\end{gathered}
$$

Therefore, the torque is
$\vec{\tau}=\vec{r} \times \vec{F}=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ r_{x} & r_{y} & r_{z} \\ F_{x} & F_{y} & F_{z}\end{array}\right|=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ -4 & -7 & 5 \\ 3 & 0 & -6\end{array}\right|=\vec{\imath}(42-0)-\vec{\jmath}(24-15)+\vec{k}(0+21)=42 \vec{\imath}-9 \vec{\jmath}+21 \vec{k}$.

Answer: $\vec{\imath}=42 \vec{\imath}-9 \vec{\jmath}+21 \vec{k}$.

