Answer on Question \#77927 - Math - Analytic Geometry

Question

Center of the circle $(0,0)$ is tangent to the line $x-3 y=6$

Solution

If the line is tangent to the circle, they have only one common point, and system $\left\{\begin{array}{c}x^{2}+y^{2}=R^{2} \\ x-3 y=6\end{array}\right.$, where $x^{2}+y^{2}=R^{2}$ is an equation of a circle with center at $(0,0)$ and radius R , has only one real root $\left(x_{0}, y_{0}\right)$.

$$
\left\{\begin{array}{c}
x=3 y+6 \\
(3 y+6)^{2}+y^{2}=R^{2}
\end{array} ;\left\{\begin{array}{c}
x=3 y+6 \\
9 y^{2}+36 y+36+y^{2}
\end{array}=R^{2} ;\left\{\begin{array}{c}
x=3 y+6 \\
10 y^{2}+36 y+36-R^{2}=0
\end{array}\right.\right.\right.
$$

And if the system has only one real root, equation $10 y^{2}+36 y+\left(36-R^{2}\right)=0$ must have only one real root too. Its discriminant is $D=b^{2}-4 a c=36^{2}-4 \times 10 \times\left(36-R^{2}\right)=1296-1440+40 R^{2}$. But if square equation has only one real root - its discriminant is 0

$$
\begin{gathered}
1296-1440+40 R^{2}=0 ; \\
40 R^{2}=144 \\
R^{2}=3.6
\end{gathered}
$$

So, the equation of a circle is $x^{2}+y^{2}=3.6$. From the equation $10 y^{2}+36 y+\left(36-R^{2}\right)=0$ we can find $y_{0}=-\frac{b}{2 a}=-\frac{36}{2 \times 10}=-\frac{36}{20}=-1.8$. And from the equation $x=3 y+6$ we can find $x_{0}=3 y_{0}+$ $+6=3 \times(-1.8)+6=-5.4+6=0.6$

Answer: Equation of a circle is $x^{2}+y^{2}=3.6$, and point of contact is ($0.6,-1.8$).

