Answer on Question \#77909 - Math - Algebra

Question

From the top of a cliff 55 m high, the angle of depression of a boat is 26 degree. find the distance from the boat to the foot of the cliff.

Solution

First, we have to make a drawing. On this drawing we designate the cliff and the boat. And we can draw a right triangle.

We have three sides of this triangle which are called "a", " b ", " " " and one angle "alpha", two points " H " and " F ".

The left side that called " a " is the side that shows the height of a cliff, $a=55(m)$.
The bottom side called "b" is the side that shows the distance from the boat to the foot of the cliff. We will be looking for the " b " side. The " c " gives the distance from the boat to the top of a cliff.

The angle "alpha" is the angle between the " c " and " b " sides, \angle alpha $=26^{\circ}$
The boat is located at point " H ". Point " F " is the top of a cliff.
We will use the tangent formula:

$$
\tan (a l p h a)=\frac{a}{b} \Rightarrow b=\frac{a}{\tan (a l p h a)}=\frac{55}{\tan \left(26^{\circ}\right)}=\frac{55}{0.4877}=112.77(\mathrm{~m})
$$

Answer: The distance from the boat to the foot of the cliff is 122.77 meters.

