ANSWER on Question \#77851 - Math - Calculus
 QUESTION

A rigid body is rotating with an angular speed of $\omega=3 \mathrm{rad} \cdot \mathrm{s}^{-1}$ about an axis

$$
\overrightarrow{O L}=2 \vec{\imath}-2 \vec{\jmath}+\vec{k}
$$

where O is the origin. Determine the velocity of the body at the point $P(4,1,2)$.

SOLUTION

By the definition, the relationship between the angular velocity and the velocity has the form

$$
\vec{v}=\vec{\omega} \times \vec{r}=\vec{v}=(\omega \cdot \vec{u}) \times \vec{r},
$$

where
\vec{u} - unit vector of the direction of the axis of rotation \vec{r} - radius - vector of the point at which we want to know the speed

$$
\vec{\omega} \times \vec{r}-\text { cross product }
$$

(More information: https://en.wikipedia.org/wiki/Angular velocity)
(More information: https://en.wikipedia.org/wiki/Cross product)

In our case,

$$
\begin{gathered}
p \cdot P(4,1,2) \rightarrow \vec{r}=4 \vec{\imath}+1 \vec{\jmath}+2 \vec{k} \leftrightarrow\left\{\begin{array}{l}
r_{x}=4 \\
r_{y}=1 \\
r_{z}=2
\end{array}\right. \\
\overrightarrow{O L}=2 \vec{\imath}-2 \vec{\jmath}+1 \vec{k}-\text { the axis of rotation } \rightarrow \vec{u}=\frac{\overrightarrow{O L}}{|\overrightarrow{O L}|}-\text { unit vector } \\
|\overrightarrow{O L}|=\sqrt{(2)^{2}+(-2)^{2}+(1)^{2}}=\sqrt{4+4+1}=\sqrt{9}=3
\end{gathered}
$$

Then,

$$
\vec{u}=\frac{\overrightarrow{O L}}{|\overrightarrow{O L}|}=\frac{2 \vec{\imath}-2 \vec{\jmath}+1 \vec{k}}{3}=\left(\frac{2}{3}\right) \vec{\imath}-\left(\frac{2}{3}\right) \vec{\jmath}+\left(\frac{1}{3}\right) \vec{k}
$$

Conclusion,

$$
\begin{gathered}
\vec{\omega}=\omega \cdot \vec{\imath}=3 \cdot\left(\left(\frac{2}{3}\right) \vec{\imath}-\left(\frac{2}{3}\right) \vec{\jmath}+\left(\frac{1}{3}\right) \vec{k}\right)=2 \vec{\imath}-2 \vec{\jmath}+1 \vec{k} \\
\vec{\omega}=2 \vec{\imath}-2 \vec{\jmath}+1 \vec{k} \leftrightarrow\left\{\begin{array}{c}
\omega_{x}=2 \\
\omega_{y}=-2 \\
\omega_{z}=1
\end{array}\right.
\end{gathered}
$$

Then,

$$
\begin{gathered}
\vec{v}=\vec{\omega} \times \vec{r}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\omega_{x} & \omega_{y} & \omega_{z} \\
r_{x} & r_{y} & r_{z}
\end{array}\right|=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
2 & -2 & 1 \\
4 & 1 & 3
\end{array}\right|= \\
=\vec{\imath} \cdot\left|\begin{array}{cc}
-2 & 1 \\
1 & 3
\end{array}\right|-\vec{\jmath} \cdot\left|\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right|+\vec{k} \cdot\left|\begin{array}{cc}
2 & -2 \\
4 & 1
\end{array}\right|=\vec{\imath} \cdot(-2 \cdot 3-1 \cdot 1)-\vec{\jmath} \cdot(2 \cdot 3-1 \cdot 4)+\vec{k} \cdot(2 \cdot 1-4 \cdot(-2))= \\
=\vec{\imath} \cdot(-6-2)-\vec{\jmath} \cdot(6-4)+\vec{k} \cdot(2+8)=-8 \vec{\imath}+2 \vec{\jmath}+10 \vec{k} \\
\\
\vec{v}=-8 \vec{\imath}+2 \vec{\jmath}+10 \vec{k} \\
v=|\vec{v}|=\sqrt{(-8)^{2}+(2)^{2}+(10)^{2}}=\sqrt{64+4+100}=\sqrt{168}=\sqrt{4 \cdot 42}=2 \sqrt{42} \approx 12.961481 \\
v=2 \sqrt{42} \approx 12.961481
\end{gathered}
$$

ANSWER:

$$
\left\{\begin{array}{c}
\vec{v}=-8 \vec{\imath}+2 \vec{\jmath}+10 \vec{k} \\
v=2 \sqrt{42} \approx 12.961481
\end{array}\right.
$$

