Answer on Question \#77820 - Math - Geometry

Question

Hi my geometry question is- A new part needs to be designed for a machine. The cube center of the part has a side length of 2 in . Each cylinder off the sides of the cube has a diameter and height that matches the sides of the cube with a 1 inch hole drilled out 1 inch deep. There are 4 cylinders. How much metal is needed to make one part?

Solution

As each of four cylinders is 1 in deep (the height of each cylinder is 1 in) we can say that every two cylinders form one cylinder if height 2 in, i.e. the same value that the side of a cube is. A solid formed by intersection of these two cylinders is the one that is drilled off the initial cube. The first hole is centered along the x axis, the second hole is centered along the y axis. The solid common to two (or three) right circular cylinders of equal radii intersecting at right angles is called the Steinmetz solid. Two cylinders intersecting at right angles are called a bicylinder.

The volume of the initial cube is:

$$
V_{\text {cube }}=a^{3}=2^{3} \mathrm{in}^{3}=8 \mathrm{in}^{3}
$$

To find common volume of two intersecting cylinders we should subtract volume of bicylinder from the volume of the two cylinders added together.

The volume of bicylider is:

$$
V_{b i c y l}=\frac{16}{3} r^{3}
$$

where r is the radius of a cylinder.
As diameter of a cylinder is 1 in then radius is

$$
\begin{gathered}
\mathrm{r}=\mathrm{d} / 2=1 / 2 \text { (in). } \\
V_{\text {bicyl }}=\frac{16}{3} \times\left(\frac{1}{2}\right)^{3}=\frac{16}{3 \times 8}=\frac{2}{3}\left(i n^{3}\right)
\end{gathered}
$$

The volume of one cylinder is:

$$
\begin{gathered}
V_{c y l}=\pi r^{2} h \\
V_{c y l}=\pi \times\left(\frac{1}{2}\right)^{2} \times 2=\pi \times \frac{1}{2}\left(i n^{3}\right)
\end{gathered}
$$

The volume of the two cylinders added together is:

$$
2 V_{c y l}=2 \times \pi \times \frac{1}{2}=\pi\left(i n^{3}\right)
$$

The volume of a solid obtained is:

$$
V=V_{\text {cube }}-\left(2 V_{c y l}-V_{\text {bicyl }}\right)=8-\left(\pi-\frac{2}{3}\right)=8+\frac{2}{3}-\pi=\frac{26}{3}-\pi \cong 5.53\left(i n^{3}\right)
$$

The volume of a metal required is $5.53 \mathrm{in}^{3}$.
Answer: $5.53 \mathrm{in}^{3}$.

