ANSWER on Question \#77815 - Math - Differential Equations
 QUESTION

$$
\left(D^{2}+3 D D^{\prime}+2 D^{\prime}\right) z=\cos (x+3 y)
$$

SOLUTION

As we know

$$
F\left(D, D^{\prime}\right) z=f(x, y) \rightarrow z(x, y)=C . F .+P . I .
$$

where

$$
\text { C.F.: } F\left(D, D^{\prime}\right) z=0
$$

1 STEP: Let find C.F.

$$
\left(D^{2}+3 D D^{\prime}+2 D^{\prime}\right) z=0
$$

Since $\left(D^{2}+3 D D^{\prime}+2 D^{\prime}\right)$ cannot be resolved into linear factors in D and D^{\prime}, hence

$$
\text { C.F. }=A e^{h x+k y},
$$

where A, h, k are arbitrary constants.

$$
\begin{aligned}
D^{2}\left(A e^{k x+k y}\right) & =\frac{\partial^{2}}{\partial x^{2}}\left(A e^{h x+k y}\right)=h^{2} \cdot A e^{h x+k y} \\
3 D D^{\prime}\left(A e^{h x+k y}\right) & =3 \cdot \frac{\partial^{2}}{\partial x \partial y}\left(A e^{h x+k y}\right)=3 h k \cdot A e^{h x+k y} \\
2 D^{\prime}\left(A e^{h x+k y}\right) & =2 \cdot \frac{\partial}{\partial y}\left(A e^{h x+k y}\right)=2 k \cdot A e^{h x+k y}
\end{aligned}
$$

Then,

$$
\begin{gathered}
\left(D^{2}+3 D D^{\prime}+2 D^{\prime}\right) z=0 \rightarrow A\left(h^{2}+3 h k+2 k\right) e^{h x+k y}=0 \rightarrow h^{2}+3 h k+2 k=0 \rightarrow \\
k(2+3 h)=-h^{2} \rightarrow k=\frac{-h^{2}}{2+3 h}
\end{gathered}
$$

Conclusion,

$$
\left\{\begin{array}{c}
\text { C.F. }=\sum_{h=-\infty}^{+\infty} A e^{h x+k y} \\
k=\frac{-h^{2}}{2+3 h}
\end{array}\right.
$$

2 STEP: Let find P.I.

$$
\begin{gathered}
\text { P.I. }=\frac{1}{D^{2}+3 D D^{\prime}+2 D^{\prime}} \cos (x+3 y)=\frac{1}{D^{2}+3 D D^{\prime}+2 D^{\prime}} \cos (1 \cdot x+3 \cdot y)= \\
=\frac{1}{(1 \cdot i)^{2}+3 \cdot(1 \cdot i) \cdot(3 \cdot i)+2 D^{\prime}} \cos (1 \cdot x+3 \cdot y)=\frac{1}{i^{2}+3 \cdot 3 i^{2}+2 D^{\prime}} \cos (x+3 y)= \\
=\frac{1}{-1+3 \cdot(-3)+2 D^{\prime}} \cos (x+3 y)=\frac{1}{-1-9+2 D^{\prime}} \cos (x+3 y)=\frac{1}{2 D^{\prime}-10} \cos (x+3 y)= \\
=\frac{1}{2\left(D^{\prime}-5\right)} \cos (x+3 y)=\frac{\left(D^{\prime}+5\right)}{2\left(D^{\prime}-5\right)\left(D^{\prime}+5\right)} \cos (x+3 y)=\frac{1}{2} \cdot \frac{D^{\prime}+5}{D^{\prime 2}-25} \cos (x+3 y)= \\
=\frac{1}{2} \cdot \frac{D^{\prime}+5}{(3 i)^{2}-25} \cos (x+3 y)=\frac{1}{2} \cdot \frac{D^{\prime}+5}{-9-25} \cos (x+3 y)=\frac{1}{2} \cdot \frac{D^{\prime}+5}{-34} \cos (x+3 y)= \\
=-\frac{1}{68}\left(\frac{\partial}{\partial y}+5\right) \cos (x+3 y)=-\frac{1}{68}\left(\frac{\partial}{\partial y}(\cos (x+3 y))+5 \cdot \cos (x+3 y)\right)= \\
=-\frac{1}{68}(-3 \sin (x+3 y)+5 \cos (x+3 y))
\end{gathered}
$$

Conclusion,

$$
\text { P.I. }=\frac{3}{68} \cdot \sin (x+3 y)-\frac{5}{68} \cdot \cos (x+3 y)
$$

Then,

$$
z(x, y)=\text { C.F. }+ \text { P.I. }=\sum_{h=-\infty}^{+\infty} A e^{h x+k y}+\frac{3}{68} \cdot \sin (x+3 y)-\frac{5}{68} \cdot \cos (x+3 y)
$$

$$
\left\{\begin{array}{c}
z(x, y)=\sum_{h=-\infty}^{+\infty} A e^{h x+k y}+\frac{3}{68} \cdot \sin (x+3 y)-\frac{5}{68} \cdot \cos (x+3 y) \\
k=\frac{-h^{2}}{2+3 h}
\end{array}\right.
$$

ANSWER:

$$
\left\{\begin{array}{c}
z(x, y)=\sum_{h=-\infty}^{+\infty} A e^{h x+k y}+\frac{3}{68} \cdot \sin (x+3 y)-\frac{5}{68} \cdot \cos (x+3 y) \\
k=\frac{-h^{2}}{2+3 h}
\end{array}\right.
$$

Answer provided by https://www.AssignmentExpert.com

