Question \#77772, Math / Differential Geometry | Topology

Compute the normal curvature of the circle $\alpha(t)=(\cos t, \sin t, 1)$ on the elliptic paraboloid $\sigma(u, v)=\left(u, v, u^{\wedge} 2+v^{\wedge} 2\right)$.

Solution. First we note that $\cos ^{2} t+\sin ^{2} t=1$, so the curve $\boldsymbol{\alpha}(t)$ is contained in the surface $\boldsymbol{\sigma}(u, v)=\left(u, v, u^{2}+v^{2}\right)$.

To compute the normal and geodesic curvature of the circle, we need to compute $\boldsymbol{\alpha}^{\prime}(t), \mathbf{n}(t)$ and $\mathbf{n}(t) \times \boldsymbol{\alpha}^{\prime}(t)$. In fact, $\boldsymbol{\alpha}^{\prime}(t)=(-\sin t, \cos t, 0),\left\|\boldsymbol{\alpha}^{\prime}(t)\right\|=1$, so $\boldsymbol{\alpha}$ is the arc-length parametrization. To find $\mathbf{n}(t)$, we note that $\mathbf{n}(t)$ is the restriction of \mathbf{n} to the curve $\boldsymbol{\alpha}$. So we first calculate \mathbf{n}. Since $\boldsymbol{\sigma}_{u}=(1,0,2 u), \boldsymbol{\sigma}_{v}=(0,1,2 v)$, $\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}=(-2 u,-2 v, 1),\left\|\boldsymbol{\sigma}_{u} \times \boldsymbol{\sigma}_{v}\right\|=\sqrt{1+4 u^{2}+4 v^{2}}$. Hence

$$
\left.\mathbf{n}=-\frac{2 u}{\sqrt{1+4 u^{2}+4 v^{2}}},-\frac{2 v}{\sqrt{1+4 u^{2}+4 v^{2}}}, \frac{1}{\sqrt{1+4 u^{2}+4 v^{2}}}\right) .
$$

To find $\mathbf{n}(t)$ (the restriction of \mathbf{n} to the curve $\boldsymbol{\alpha}$), we we need to write $\boldsymbol{\alpha}(t)=$ $\boldsymbol{\sigma}(u(t), v(t))$ (since the curve $\boldsymbol{\alpha}$ is contained in the surface, we can always do so). In fact, $\boldsymbol{\alpha}(t)=\boldsymbol{\sigma}(u(t), v(t))$ means that

$$
(\cos t, \sin t, 1)=\left(u(t), v(t), u^{2}(t)+v^{2}(t)\right)
$$

This implies that $u(t)=\cos t, v(t)=\sin t$. Since

$$
\mathbf{n}=\left(-\frac{2 u}{\sqrt{1+4 u^{2}+4 v^{2}}},-\frac{2 v}{\sqrt{1+4 u^{2}+4 v^{2}}}, \frac{1}{\sqrt{1+4 u^{2}+4 v^{2}}}\right) .
$$

The restriction of \mathbf{n} to the curve $\boldsymbol{\alpha}$ is (taking $u(t)=\cos t, v(t)=\sin t)$

$$
\left.\mathbf{n}(t)=\mathbf{n}(\boldsymbol{\alpha}(t))=-\frac{2}{\sqrt{5}} \cos t,-\frac{2}{\sqrt{5}} \sin t, \frac{1}{\sqrt{5}}\right) .
$$

Finally, $\mathbf{n}(t) \times \boldsymbol{\alpha}^{\prime}(t)=\left(-\frac{1}{\sqrt{5}} \cos t,-\frac{1}{\sqrt{5}} \sin t,-\frac{1}{\sqrt{5}}\right)$.
To find the normal curvature $\kappa_{n}(t)$, we note that $\kappa_{n}(t)=\boldsymbol{\alpha}^{\prime \prime}(t) \cdot \mathbf{n}(t)$. Since $\boldsymbol{\alpha}^{\prime \prime}(t)=(-\cos t,-\sin t, 0)$, we have

$$
\kappa_{n}(t)=\boldsymbol{\alpha}^{\prime \prime}(t) \cdot \mathbf{n}(t)=\frac{2}{\sqrt{5}} .
$$

