Answer on Question \#77688 - Math - Trigonometry Question

A flagpole 25 ft high, standing on the edge of the roof of a high building, when seen from a point A on the ground subtends an angle of $3^{\circ} 50^{\prime}$. If A is 200 ft from the bottom of the pole, how far is it from the top?

Solution

Given:
$a=25 \mathrm{ft}$,
$b=200 f t$,
$\alpha=3^{\circ} 50^{\prime}=3.833^{\circ}$,
$c=$?

The equation for the angle β can be implied from the law of sines:

$$
\begin{gathered}
\sin \beta=\frac{b}{a} \sin \alpha \\
\sin \beta=\frac{200}{25} \sin 3^{\circ} 50^{\prime}=0.5348 \\
\beta=\sin ^{-1} 0.5348=32.33^{\circ}
\end{gathered}
$$

The third angle is

$$
\gamma=180^{\circ}-\alpha-\beta=180^{\circ}-3.833^{\circ}-32.33^{\circ}=143.837^{\circ}
$$

The third side can then be found from the law of sines:

$$
c=a \frac{\sin \gamma}{\sin \alpha}=25 \cdot \frac{\sin 143.837^{\circ}}{\sin 3.833^{\circ}}=220.7 \mathrm{ft}
$$

Answer: 220.7 ft

