Answer on Question \#77428 - Math - Differential Equations Question

 $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=1+3 x+x^{2}$.
Solution

The corresponding homogeneous equation is $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=0$. So, characteristic equation will be

$$
r^{2}+3 r+2=(r+1)(r+2)=0
$$

Then the complementary solution will be

$$
y_{c}=C_{1} e^{-x}+C_{2} e^{-2 x}
$$

The nonhomogeneous equation has $f(x)=1+3 x+x^{2}$. We will search a particular solution in the next general quadratic polynomial form:

$$
y_{p}=A+B x+C x^{2}
$$

Then $\frac{d y}{d x}=B+2 C x$ and $\frac{d^{2} y}{d x^{2}}=2 C$. Substitute them into the equation:

$$
2 C+3(B+2 C x)+2\left(A+B x+C x^{2}\right)=1+3 x+x^{2}
$$

The corresponding terms on both sides should have the same coefficients. Hence, we obtain:

$$
\begin{gathered}
2 C=1 \\
6 C+2 B=3 \\
2 C+3 B+2 A=1
\end{gathered}
$$

Now we have the next solution for unknown coefficients:

$$
\begin{aligned}
C & =\frac{1}{2} \\
B & =0 \\
A & =0
\end{aligned}
$$

The general solution of equation is

$$
y=y_{c}+y_{p}=C_{1} e^{-x}+C_{2} e^{-2 x}+\frac{x^{2}}{2}
$$

Answer: $y=C_{1} e^{-x}+C_{2} e^{-2 x}+\frac{x^{2}}{2}$.

