ANSWER on Question \#77331 Math. Calculus

QUESTION

A 6 foot boy throws the javelin with an initial speed of 87 feet per second at an angle of 38° with the horizontal. What is the maximum height reached?

SOLUTION

The maximum height $h_{\max }$ consists of two parts:

1) initial throw height $-h_{1}=6$ feet
2) the height at which the spear would have risen had it been thrown from the Earth - $h_{2}=$?

Conclusion,
That is, our task is to find a formula that shows the maximum height if we know the initial speed v_{0} and angle α of the throw.

The equation of motion has the form

$$
\vec{r}=\overrightarrow{v_{0}} t+\frac{\vec{g} t^{2}}{2}
$$

In the projections on the coordinate axes:

1) Rise

$$
\begin{gathered}
O y: y=v_{y} t-\frac{g t^{2}}{2} \\
O x: x=v_{x} t
\end{gathered}
$$

And

$$
\left\{\begin{array}{l}
v_{y}=v_{o} \cdot \sin \alpha \\
v_{x}=v_{0} \cdot \cos \alpha
\end{array}\right.
$$

2) Declivity

$$
\begin{gathered}
O y: y=h_{2}-\frac{g T^{2}}{2} \\
O x: x=\left(v_{0} \cdot \cos \alpha\right) T
\end{gathered}
$$

We are interested in only the first part of the movement - the rise. The rise will occur as long as the force of gravity is not completely "stop" the body. In the formula form this condition has the form

$$
\left\{\begin{array}{c}
v_{y}=v_{o} \cdot \sin \alpha-g t \\
v_{y}=0
\end{array} \rightarrow v_{o} \cdot \sin \alpha-g t_{\text {rise }}=0 \rightarrow t_{\text {rise }}=\frac{v_{0} \cdot \sin \alpha}{g}\right.
$$

Conclusion,

$$
t_{\text {rise }}=\frac{v_{0} \cdot \sin \alpha}{g}
$$

Then,

$$
\begin{gathered}
h_{2}=y\left(t_{\text {rise }}\right)=\left(v_{0} \cdot \sin \alpha\right) \cdot\left(\frac{v_{0} \cdot \sin \alpha}{g}\right)-\frac{g}{2} \cdot\left(\frac{v_{0} \cdot \sin \alpha}{g}\right)^{2}=\frac{v_{0}^{2} \cdot \sin ^{2} \alpha}{g}-\frac{g \cdot v_{0}^{2} \cdot \sin ^{2} \alpha}{2 g^{2}}= \\
=\frac{2 \cdot v_{0}^{2} \cdot \sin ^{2} \alpha}{2 g}-\frac{v_{0}^{2} \cdot \sin ^{2} \alpha}{2 g}=\frac{v_{0}^{2} \cdot \sin ^{2} \alpha}{2 g}
\end{gathered}
$$

Conclusion,

$$
h_{2}=\frac{v_{0}^{2} \cdot \sin ^{2} \alpha}{2 g}
$$

Then,

$$
\begin{aligned}
h_{\max }=h_{1}+h_{2}=6+\frac{v_{0}^{2} \cdot \sin ^{2} \alpha}{2 g} & \approx 6+\frac{(87)^{2} \cdot \sin ^{2}\left(38^{\circ}\right)}{2 \cdot(32.174)}=50.58(\text { feet }) \\
h_{\max } & \approx 50.58 \text { feet }
\end{aligned}
$$

ANSWER

$$
h_{\max } \approx 50.58 \text { feet }
$$

Answer provided by https://www.AssignmentExpert.com

