1 If f is function from A to B and g is function B to C and both f and g are onto. Show that $g \circ f$ is also onto. Is $g \circ f$ one-to-one if both f and g are one-to-one.

Solution

Let choose an arbitrary $c \in C$, since $g: B \rightarrow C$ is onto map, then there exists $b \in B$ such that $g(b)=c$. Since $f: A \rightarrow B$ is onto map, there exists $a \in A$ such that $f(a)=b$. Therefore, $c=g(b)=g(f(a))$ and it shows that $g \circ f$ is onto map.

For every $a_{1} \neq a_{2}$ from one-to-one property of f we have $f\left(a_{1}\right) \neq f\left(a_{2}\right)$ and from one-to-one property of g we have $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$. So, if both f and g are one-to-one maps the map $g \circ f$ is also one-to-one.

2 Let f, g and $h: \mathbb{R} \rightarrow \mathbb{R}$ be defined by (\mathbb{R} is the set of real numbers) $f(x)=x+2, g(x)=\left(1+x^{2}\right)^{-1}, h(x)=3$. Compute $f^{-1} g(x)$ and $h f\left(g f^{-1}\right)(h f(x))$.

Solution

If $f(x)=x+2$, then $f^{-1}=x-2$ and $f^{-1} g(x)=f^{-1}\left(\left(1+x^{2}\right)^{-1}\right)=\left(1+x^{2}\right)^{-1}-2$.
$h(f(x))=h(x+2)=3$,
$g\left(f^{-1}\right)(3)=g(3-2)=g(1)=2^{-1}=0.5$,
$h f(0.5)=h(0.5+2)=h(2.5)=3$, so
$h f\left(g f^{-1}\right)(h f(x))=3$.

