Answer on Question \#77238 - Math - Discrete Mathematics

Question

1) Determine whether each function is one-to-one. The domain of each function is the set of all real numbers. If the function is not one-to-one, prove it. Also, determine whether f is onto the set of all real numbers. If f is not onto, prove it.
a)

$$
f(x)=6 x-9
$$

Solution

The function is one-to-one because if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$:

$$
6 x_{1}-9=6 x_{2}-9 \Rightarrow x_{1}=x_{2}
$$

The function is onto because for every y there is x such that $f(x)=y$:

$$
x=\frac{y+9}{6}
$$

b)

$$
f(x)=2 x^{3}-4
$$

Solution

The function is one-to-one because if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$:

$$
2 x_{1}^{3}-4=2 x_{2}^{3}-4 \Rightarrow x_{1}=x_{2}
$$

The function is onto because for every y there is x such that $f(x)=y$:

$$
x=\sqrt[3]{\frac{y+4}{2}}
$$

Question

2) Let $A=\{1,2,3\}, B=\{p, q\}$ and $C=\{a, b\}$. Let $f: A \rightarrow B$ is $f=\{(1, p),(2, p),(3, q)\}$ and $g: B \rightarrow C$ is given by $\{(p, b),(q, b)\}$. Find $g \circ f$ and show it pictorially.

Solution

$$
\begin{gathered}
(g \circ f)(a)=g(f(a)) ; a \in A \\
f(1)=p ; g(p)=b \Rightarrow(g \circ f)(1)=b \\
f(2)=p ; g(p)=b \Rightarrow(g \circ f)(2)=b \\
f(3)=q ; g(p)=b \Rightarrow(g \circ f)(3)=b \\
g \circ f: A \rightarrow C=\{(1, b),(2, b),(3, b)\}
\end{gathered}
$$

