Question 77237

1 Determine whether each set is a function from $X=\{1,2,3,4\}$ to $Y=\{a, b, c, d\}$. If it is a function, find its domain and range, draw its arrow diagram, and determine if it is one-to-one, onto or both. a) $\{(1, a),,(2, a),(3, c),(4, b)\}$ b) $\{(1, c),(2, a),(3, b),(4, c),(2, d)\}$ c) $\{(1, d),(2, d),(4, a)\}$

Solution
a) f is function (each $x \in X$ has the only image $y \in Y$), not one-to-one (because $f(1)=f(2)=a$), not onto (because for $d \in Y$ there is not such $x \in X$ that $f(x)=d$). Domain $-X$, range $-\{a, b, c\}$.

b) f is not function (because $f(2)=a$ and $f(2)=d$, i.e. for one $x \in X$ exist two different $y \in Y$).
c) f is function (each $x \in X$ has the only image $y \in Y$), not one-to-one (because $f(1)=f(2)=d$), not onto (because for $b, c \in Y$ there is not such $x \in X$ that $f(x)=b$ and $f(x)=c)$. Domain $-\{1,2,4\}$, range $-\{a, d\}$.

2 List all possible functions from A to $B, A=\{a, b, c\}, B=\{0,1\}$. Also indicate in each case whether the function is one-to-one, is onto and one-to-one-onto.

Solution

1) $f(a)=f(b)=f(c)=0$ not one-to-one (all $x \in A$ have the same image), not onto (because for $1 \in B$ there is not such $x \in A$ that $f(x)=1$;
2) $f(a)=f(b)=f(c)=1$ not one-to-one (all $x \in A$ have the same image), not onto (because for $0 \in B$ there is not such $x \in A$ that $f(x)=0$);
3) $f(a)=f(b)=0, f(c)=1$ not one-to-one (for different $a, b \in A, \quad f(a)=f(b)$), onto (because for all $y \in B$ there exists such $x \in A$ that $f(x)=y$);
4) $f(a)=f(c)=0, f(b)=1$ not one-to-one (for different $a, c \in A, \quad f(a)=f(c)$), onto (because for all $y \in B$ there exists such $x \in A$ that $f(x)=y$);
5) $f(b)=f(c)=0, f(a)=1$ not one-to-one (for different $c, b \in A, \quad f(c)=f(b)$), onto (because for all $y \in B$ there exists such $x \in A$ that $f(x)=y$);
6) $f(a)=f(b)=1, f(c)=0$ not one-to-one (for different $a, b \in A, \quad f(a)=f(b)$), onto (because for all $y \in B$ there exists such $x \in A$ that $f(x)=y$);
7) $f(a)=f(c)=1, f(b)=0$ not one-to-one (for different $a, c \in A, \quad f(a)=f(c)$), onto (because for all $y \in B$ there exists such $x \in A$ that $f(x)=y$);
8) $f(c)=f(b)=1, f(a)=0$ not one-to-one (for different $c a, b \in A, \quad f(c)=f(b)$), onto (because for all $y \in B$ there exists such $x \in A$ that $f(x)=y)$;
