Question 77237

1 Determine whether each set is a function from $X = \{1, 2, 3, 4\}$ to $Y = \{a, b, c, d\}$. If it is a function, find its domain and range, draw its arrow diagram, and determine if it is one-to-one, onto or both. a) $\{(1, a), (2, a), (3, c), (4, b)\}$ b) $\{(1, c), (2, a), (3, b), (4, c), (2, d)\}$ c) $\{(1, d), (2, d), (4, a)\}$

Solution

a) f is function (each $x \in X$ has the only image $y \in Y$), not one-to-one (because f(1) = f(2) = a), not onto (because for $d \in Y$ there is not such $x \in X$ that f(x) = d). Domain -X, range $-\{a, b, c\}$.

b) f is not function (because f(2) = a and f(2) = d, i.e. for one $x \in X$ exist two different $y \in Y$).

c) f is function (each $x \in X$ has the only image $y \in Y$), not one-to-one (because f(1) = f(2) = d), not onto (because for $b, c \in Y$ there is not such $x \in X$ that f(x) = b and f(x) = c). Domain $-\{1, 2, 4\}$, range $-\{a, d\}$.

2 List all possible functions from A to B, $A = \{a, b, c\}$, $B = \{0, 1\}$. Also indicate in each case whether the function is one-to-one, is onto and one-to-one-onto.

Solution

1) f(a) = f(b) = f(c) = 0 not one-to-one (all $x \in A$ have the same image), not onto (because for $1 \in B$ there is not such $x \in A$ that f(x) = 1);

2) f(a) = f(b) = f(c) = 1 not one-to-one (all $x \in A$ have the same image), not onto (because for $0 \in B$ there is not such $x \in A$ that f(x) = 0);

3) f(a) = f(b) = 0, f(c) = 1 not one-to-one (for different $a, b \in A$, f(a) = f(b)), onto (because for all $y \in B$ there exists such $x \in A$ that f(x) = y);

4) f(a) = f(c) = 0, f(b) = 1 not one-to-one (for different $a, c \in A$, f(a) = f(c)), onto (because for all $y \in B$ there exists such $x \in A$ that f(x) = y);

5) f(b) = f(c) = 0, f(a) = 1 not one-to-one (for different $c, b \in A$, f(c) = f(b)), onto (because for all $y \in B$ there exists such $x \in A$ that f(x) = y);

6) f(a) = f(b) = 1, f(c) = 0 not one-to-one (for different $a, b \in A$, f(a) = f(b)), onto (because for all $y \in B$ there exists such $x \in A$ that f(x) = y);

7) f(a) = f(c) = 1, f(b) = 0 not one-to-one (for different $a, c \in A$, f(a) = f(c)), onto (because for all $y \in B$ there exists such $x \in A$ that f(x) = y);

8) f(c) = f(b) = 1, f(a) = 0 not one-to-one (for different $ca, b \in A$, f(c) = f(b)), onto (because for all $y \in B$ there exists such $x \in A$ that f(x) = y);