

Answer on Question #76994 – Math – Linear Algebra

Question

$$x = u + t_1v + t_2w$$

What conditions on the vectors $u, v, w \in \mathbb{R}^3$, would create an object that is not a plane?

Solution

The expression $x = u + t_1v + t_2w$ sets a plane in \mathbb{R}^3 only if: 1) u the radius-vector of a point; 2) v, w are (nonzero) linear independent (not collinear) vectors.

If u is the radius-vector of some point, then $x = u + t_1v + t_2w$ is not plane only if vectors v and w are linearly dependent (v and w are collinear).

Vectors $v, w \in \mathbb{R}^3$ must be linearly dependent. It means that $\exists a_1, a_2 \in \mathbb{R} (a_1 \neq 0 \text{ or } a_2 \neq 0): a_1v + a_2w = 0$.