Answer on Question \#76994 - Math - Linear Algebra

Question

$\mathrm{x}=\mathrm{u}+\mathrm{t} 1 \mathrm{v}+\mathrm{t} 2 \mathrm{w}$
What conditions on the vectors $u, v, w \in R 3$, would create an object that is not a plane?

Solution

The expression $x=u+t 1^{*} v+t 2^{*} w$ sets a plane in R3 only if: 1) u the radius-vector of a point; 2) v, w are (nonzero) linear independent (not collinear) vectors.

If u is the radius-vector of some point, then $x=u+t 1^{*} v+t 2^{*} w$ is not plane only if vectors v and w are linearly dependent (v and w are collinear).

Vectors $v, w \in \mathbb{R}^{3}$ must be linearly dependent. It means that $\exists a_{1}, a_{2} \in \mathbb{R}\left(a_{1} \neq 0\right.$ or $\left.a_{2} \neq 0\right): a_{1} v+a_{2} w=0$.

