Answer on Question #76900 — Math — Quantitative Methods

Question

Use Runge Kutta Fehlberg Algorithm with tolerance TOL= [10] ~(-4) to approximate the solution to the
following initial value problem.

yM'=sint+e”(-t), 0<t<1,y(0)=0,
with hmax=0.25, and hmin=0.02.
Solution
Consider the IVP:
y' =sin(t) +e”t, y(0)=0, 0<t<1 (1)

we seek:
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The Runge-Kutta-Fehlberg method is a one-step method with the approximations calculated using the
Runge-Kutta method of order 4 and 5. For this method each step requires the use of the following six
values:
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Then we calculate the approximation to the solution with the help of the method of the fourth order:
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And the approximation to the solution with the help of the method of the 5th order:
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At each step, two different approximations for the solution are made and compared:
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The optimal step size is (6 - h). The Runge-Kutta-Felberg method consists in the fact that at each step of
the method the accuracy of the function is determined by the difference in values between the results of
the methods RK-4 and RK-5. If they differ by no more than ¢- the required accuracy, then the value is
considered an approximate value of the function at the point at the considered step. Otherwise, in the
considered step, the new step value and the new value of the function are recomputed with the
subsequent error estimate (2).

For IVP (1) the Runge-Kutta-Fehlberg method with step size 0.02 < h < 0.25 and tolerance ¢ = 107
gives a result in 7 points:

the analytical solution of the IVP:
f(t) =2—cos(t)—et

the graph of the approximate (yi) and exact (f(ti)) solutions:

15 T T

0 0.5 1 15

the difference between the approximate (yi) and the exact (f(ti)) solutions:
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step size:
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the accuracy obtained in the calculations:

1x107* . .
81077 -
fx107° -
entBIF45, 5
— 41077 -
21077 -

0 I I
1] 0.5 1 15

The result of calculations in the form of a table:
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When calculating the step size, the method controls the accuracy of the solution within TOL = 10™*
(errRKF45), as a result, when compared with the analytical solution, the maximum error is ~4.6 - 10™*
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