Answer on Question \#76495 - Math - Trigonometry

Question

Frank and Marie set sail from the same point. Frank is sailing in the direction S7oE. Marie is sailing in the direction S13०W. After 5 hours, Marie was 16 miles due west of Frank. How far had Marie sailed?

Round your answer to four decimal places.

Solution

1. Frank is sailing in the direction South-East. Marie is sailing in the direction South-West.

2. We will execute the drawing. Denote the final point of Marie by the letter M. Denote the final point of Frank by the letter F. From the points M and F we draw perpendiculars on the axis WE (points M1 and F1). Through point F1 we draw a segment parallel to MF and denote the point P.

M
3. The required segment in the figure OM is denoted by x (How far had Marie sailed). OF is denoted by y . M1F1=16 miles. OM1 is denoted by a, then OF1 is $16-\mathrm{a}$. If FF1 is denoted by n , then MP also $n, ~ P M 1$ is unknown and equal m.
4. In the triangle $O M M 1, \sin \angle M 1 O M=\frac{M M 1}{O M} ; \sin 13^{\circ}=\frac{m+n}{x}$;
5. In the triangle OFF1, $\sin \angle F 1 O F=\frac{F F 1}{O F} ; \sin 7^{\circ}=\frac{n}{y^{\prime}}$;
6. In the triangle OFM, by the cosine theorem

$$
\begin{gathered}
M F^{2}=O M^{2}+O F^{2}-2 * O M * O F \cos \angle M O F ; \\
\angle M O F=180^{\circ}-13^{\circ}-7^{\circ}=160^{\circ} ; \\
M F^{2}=x^{2}+y^{2}-2 x y \cos \angle M O F .
\end{gathered}
$$

7. In the triangle M1PF1 by the Pythagorean theorem

$$
\begin{gathered}
P F 1^{2}=M 1 F 1^{2}+M M 1^{2} ; \\
P F 1^{2}=16^{2}+m^{2}
\end{gathered}
$$

$P F 1=M F$ since we built a parallelogram, then $P F 1^{2}=M F^{2}=16^{2}+m^{2}$
8. Let us formulate the system of equations.

$$
\left\{\begin{array}{c}
16-x \cos 13^{\circ}=y \cos 7^{\circ} ; \\
\sin 13^{\circ}=\frac{m+a}{x} ; \\
\sin 7^{\circ}=\frac{a}{y} ; \\
16^{2}+m^{2}=x^{2}+y^{2}-2 x y \cos 160^{\circ} .
\end{array}\right.
$$

9. Calculate the values by means of the calculator:

$$
\cos 13^{\circ}=0.97437 ; \cos 7^{\circ}=0.99255 ; \sin 13^{\circ}=0.22495 ; \sin 7^{\circ}=0.12187 ;
$$

$\cos 160^{\circ}=-0.93969$.

$$
\left\{\begin{array}{c}
16-0.9744 x=0.99255 y \\
m+n=0.22495 x \\
n=0.12187 y \\
256+m^{2}=x^{2}+y^{2}+1.87938 x y
\end{array}\right.
$$

10. From the second equation we substitute n into the third equation and express m. From the first equation we find y. We substitute all expressions into the fourth equation.

$$
\left\{\begin{array}{c}
n=0.12187 y ; ; \\
m=0.22495\left(\frac{16-0.97437 x}{0.99255}\right)-0.12187 y ; \\
y=\frac{16-0.97437 x}{0.99255} ; \\
256+(-0.12272)^{2}(16-0.97437 x)^{2}=x^{2}+\left(\frac{16-0.97437 x}{0.99255}\right)^{2}+1.89349 x(16-0.97437 x) .
\end{array}\right.
$$

The last equation can be transformed and solved with respect to x .
11.

$$
\begin{gathered}
256+3.85792-0.46988 x+0.01431 x^{2}-x^{2}-257.92151+31.41387 x-0.95653 x^{2} \\
-30.29578 x+1.84496 x^{2}=0 ; \\
-0.09726 x^{2}+0.64821 x+1.93641=0 ; \\
D=(0.64812)^{2}+4 * 0.09726 * 1.93641=1.17340 ; \\
x_{1,2}=\frac{-0.64812 \pm \sqrt{1.1734}}{-2 * 0.09726}=\frac{0.64812 \mp 1.0832}{0.19452} ; \\
x_{1}=8.9007 ; x_{2}=-2.2367
\end{gathered}
$$

The correct value is $x>0$ because it is a distance, then $x_{1}=8.9007$.
Answer: 8.9007 miles.

