Obtain a solution of the wave equation

$$
\frac{\partial^{2} u(x, t)}{\partial t^{2}}=16 \cdot \frac{\partial^{2} u(x, t)}{\partial x^{2}}
$$

for $0 \leq x \leq \pi$ and $t>0$ and the following boundary and initial conditions:

$$
\begin{gathered}
\left\{\begin{array}{l}
u(0, t)=0 \\
u(\pi, t)=0
\end{array}\right. \text { - boundary conditions } \\
\left\{\begin{array}{c}
u(x, 0)=x(\pi-x) \\
\frac{\partial u(x, 0)}{\partial t}=0-\text { initial conditions }
\end{array}\right.
\end{gathered}
$$

SOLUTION

0 STEP: separation of variables.
Let

$$
u(x, t)=X(x) T(t) \rightarrow\left\{\begin{array}{l}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}=\frac{\partial^{2}}{\partial t^{2}}(X(x) T(t))=X(x) \cdot \frac{d^{2}(T(t))}{d t^{2}}=X(x) \cdot T^{\prime \prime}(t) \\
\frac{\partial^{2} u(x, t)}{\partial x^{2}}=\frac{\partial^{2}}{\partial x^{2}}(X(x) T(t))=T(t) \cdot \frac{d^{2}(X(x))}{d x^{2}}=X^{\prime \prime}(x) \cdot T(t)
\end{array}\right.
$$

Boundary conditions:

$$
\left\{\begin{array} { l }
{ u (0 , t) = 0 } \\
{ u (\pi , t) = 0 }
\end{array} \rightarrow \left\{\begin{array} { l }
{ u (0 , t) = X (0) T (t) = 0 , \forall t > 0 } \\
{ u (\pi , t) = X (\pi) T (t) = 0 , \forall t > 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
X(0)=0 \\
X(\pi)=0
\end{array}\right.\right.\right.
$$

Then,

$$
\begin{array}{r}
\left.\frac{\partial^{2} u(x, t)}{\partial t^{2}}=16 \cdot \frac{\partial^{2} u(x, t)}{\partial x^{2}} \rightarrow X(x) \cdot T^{\prime \prime}(t)=16 \cdot X^{\prime \prime}(x) \cdot T(t) \right\rvert\, \times \frac{1}{16 X(x) T(t)} \rightarrow \\
\frac{X(x) \cdot T^{\prime \prime}(t)}{16 X(x) T(t)}=\frac{16 \cdot X^{\prime \prime}(x) \cdot T(t)}{16 X(x) T(t)} \rightarrow \frac{1}{16} \cdot \frac{T^{\prime \prime}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda
\end{array}
$$

1 STEP: We solve the Sturm-Liouville problem.
(More information: https://en.wikipedia.org/wiki/Sturm\�\�\�Liouville theory)
In our case,

$$
\begin{gathered}
\left\{\begin{array}{c}
\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda \\
X(0)=0 \\
X(\pi)=0
\end{array}\right. \\
\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda \rightarrow X^{\prime \prime}(x)=-\lambda X(x) \rightarrow X^{\prime \prime}(x)+\lambda X(x)=0
\end{gathered}
$$

Let us find the solutions of the given equation in the form

$$
X(x)=e^{k x} \rightarrow X^{\prime \prime}(x)=k^{2} \cdot e^{k x}
$$

Then,

$$
\begin{gathered}
X^{\prime \prime}(x)+\lambda X(x)=0 \rightarrow k^{2} \cdot e^{k x}+\lambda e^{k x}=0 \rightarrow e^{k x}\left(k^{2}+\lambda\right)=0 \rightarrow k^{2}=-\lambda \\
k^{2}=-\lambda \rightarrow\left[\begin{array}{r}
k_{1}=\sqrt{-\lambda}=i \sqrt{\lambda} \\
k_{2}=-\sqrt{-\lambda}=-i \sqrt{\lambda}
\end{array}\right.
\end{gathered}
$$

Then,

$$
\begin{gathered}
X(x)=C_{1} e^{i \sqrt{\lambda} x}+C_{2} e^{-i \sqrt{\lambda} x} \equiv A_{1} \cos (\sqrt{\lambda} x)+A_{2} \sin (\sqrt{\lambda} x) \\
X(x)=A_{1} \cos (\sqrt{\lambda} x)+A_{2} \sin (\sqrt{\lambda} x)
\end{gathered}
$$

$$
X(0)=0=A_{1} \cos (\sqrt{\lambda} \cdot 0)+A_{2} \sin (\sqrt{\lambda} \cdot 0)=A_{1} \cos (0)+A_{2} \sin (0)=A_{1} \cdot 1+A_{2} \cdot 0 \rightarrow
$$

$$
A_{1}=0
$$

$$
X(\pi)=0=A_{2} \sin (\sqrt{\lambda} \pi) \rightarrow \sin (\sqrt{\lambda} \pi)=0 \rightarrow \sqrt{\lambda} \pi=\pi n, n=1,2,3, \ldots
$$

$$
\lambda_{n}=n^{2}, n=1,2,3, \ldots
$$

Conclusion,

$$
\left\{\begin{array}{c}
X_{n}(x)=A \cdot \sin (n x) \\
\lambda_{n}=n^{2} \\
n=1,2,3, \ldots
\end{array}\right.
$$

2 STEP: Finding the general solution.

$$
\begin{gathered}
\frac{1}{16} \cdot \frac{T^{\prime \prime}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda_{n} \rightarrow \frac{1}{16} \cdot \frac{T^{\prime \prime}(t)}{T(t)}=-n^{2} \rightarrow T^{\prime \prime}(t)=-16 n^{2} T(t) \rightarrow \\
T^{\prime \prime}(t)+16 n^{2} T(t)=0
\end{gathered}
$$

Let us find the solutions of the given equation in the form

$$
T(t)=e^{k t} \rightarrow T^{\prime \prime}(t)=k^{2} \cdot e^{k t}
$$

Then,

$$
\begin{gathered}
T^{\prime \prime}(t)+16 n^{2} T(t)=0 \rightarrow k^{2} \cdot e^{k t}+16 n^{2} e^{k t}=0 \rightarrow e^{k t}\left(k^{2}+16 n^{2}\right)=0 \rightarrow k^{2}=-16 n^{2} \\
k^{2}=-16 n^{2} \rightarrow\left[\begin{array}{c}
k_{1}=\sqrt{-16 n^{2}}=4 \text { in } \\
k_{2}=-\sqrt{-16 n^{2}}=-4 i n
\end{array}\right.
\end{gathered}
$$

Then,

$$
\begin{gathered}
T_{n}(x)=C_{1} e^{4 i n t}+C_{2} e^{-4 i n t} \equiv A_{1} \cos (4 n t)+A_{2} \sin (4 n t) \\
T_{n}(x)=A_{n}^{(1)} \cos (4 n t)+A_{n}^{(1)} \sin (4 n t)
\end{gathered}
$$

Then,

$$
\begin{aligned}
& u_{n}(x, t)=X_{n}(x) \cdot T_{n}(t)=(A \cdot \sin (n x)) \cdot\left(A_{n}^{(1)} \cos (4 n t)+A_{n}^{(1)} \sin (4 n t)\right) \rightarrow \\
& u_{n}(x, t)=\left(B_{n}^{(1)} \cos (4 n t)+B_{n}^{(2)} \sin (4 n t)\right) \sin (n x)-\text { particular solution }
\end{aligned}
$$

Conclusion,

$$
\begin{gathered}
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)-\text { general solution } \\
u(x, t)=\sum_{n=1}^{\infty}\left(B_{n}^{(1)} \cos (4 n t)+B_{n}^{(2)} \sin (4 n t)\right) \sin (n x)
\end{gathered}
$$

3 STEP: Determine the coefficients B_{1} and B_{2}.
To do this, you must use the initial conditions.

$$
\begin{gathered}
\frac{\partial u(x, 0)}{\partial t}=0 \rightarrow \\
\frac{\partial}{\partial t}\left(\sum_{n=1}^{\infty}\left(B_{n}^{(1)} \cos (4 n t)+B_{n}^{(2)} \sin (4 n t)\right) \sin (n x)\right)_{t=0}= \\
=\left(\sum_{n=1}^{\infty}\left(-4 n B_{n}^{(1)} \sin (4 n t)+4 n B_{n}^{(2)} \cos (4 n t)\right) \sin (n x)\right)_{t=0}= \\
=\sum_{n=1}^{\infty}\left(-4 n B_{n}^{(1)} \sin (4 n \cdot 0)+4 n B_{n}^{(2)} \cos (4 n \cdot 0)\right) \sin (n x)= \\
=\sum_{n=1}^{\infty}\left(-4 n B_{n}^{(1)} \cdot 0+4 n B_{n}^{(2)} \cdot 1\right) \sin (n x)=\sum_{n=1}^{\infty} 4 n B_{n}^{(2)} \sin (n x)=0
\end{gathered}
$$

Then,

$$
4 n B_{n}^{(2)}=0 \rightarrow B_{n}^{(2)}=0
$$

Conclusion,

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n}^{(1)} \cos (4 n t) \sin (n x)
$$

$$
\begin{gathered}
u(x, 0)=x(\pi-x) \rightarrow \\
u(x, 0)=\left(\sum_{n=1}^{\infty} B_{n}^{(1)} \cos (4 n t) \sin (n x)\right)_{t=0}=\sum_{n=1}^{\infty} B_{n}^{(1)} \cos (4 n \cdot 0) \sin (n x)= \\
=\sum_{n=1}^{\infty} B_{n}^{(1)} \cdot 1 \cdot \sin (n x) \rightarrow \sum_{n=1}^{\infty} B_{n}^{(1)} \sin (n x)=x(\pi-x)
\end{gathered}
$$

As we know

$$
\int_{0}^{\pi} \sin (m x) \cdot \sin (n x) d x=\left\{\begin{array}{l}
\frac{\pi}{2}, n=m \\
0, n \neq m
\end{array}\right.
$$

In our case,

$$
\begin{gathered}
\int_{0}^{\pi} \times\left|\sum_{n=1}^{\infty} B_{n}^{(1)} \sin (n x)=x(\pi-x)\right| \times \sin (m x) d x \\
B_{m}^{(1)}=\int_{0}^{\pi} x(\pi-x) \sin (m x) d x=\int_{0}^{\pi}\left(\pi x-x^{2}\right) \sin (m x) d x \rightarrow \\
B_{m}^{(1)}=\int_{0}^{\pi} \pi x \sin (m x) d x-\int_{0}^{\pi} x^{2} \sin (m x) d x=I_{1}-I_{2}
\end{gathered}
$$

$$
\begin{gathered}
I_{1}=\int_{0}^{\pi} \pi x \sin (m x) d x=\pi \cdot \int_{0}^{\pi} \underbrace{x}_{u} \cdot \underbrace{\sin (m x) d x}_{d v}=\left[\begin{array}{c}
u=x \rightarrow d u=d x \\
d v=\sin (m x) d x \\
v=\frac{\cos (m x)}{m}
\end{array}\right]= \\
=\pi \cdot\left(-\left.\frac{x \cdot \cos (m x)}{m}\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{-\cos (m x) d x}{m}\right)= \\
=\pi \cdot\left(-\frac{\pi \cdot \cos (\pi m)}{m}-\left(-\frac{0 \cdot \cos (m \cdot 0)}{m}\right)+\frac{1}{m} \int_{0}^{\pi} \cos (m x) d x\right)= \\
=\pi \cdot\left(-\frac{\pi \cdot(-1)^{m}}{m}+\left.\frac{1}{m} \cdot \frac{\sin (m x)}{m}\right|_{0} ^{\pi}\right)=\pi \cdot\left(-\frac{\pi \cdot(-1)^{m}}{m}+\frac{\sin (m \cdot \pi)}{m^{2}}-\frac{\sin (m \cdot 0)}{m^{2}}\right)= \\
=\pi \cdot\left(-\frac{\pi \cdot(-1)^{m}}{m}+0-0\right)=-\frac{\pi^{2} \cdot(-1)^{m}}{m}
\end{gathered}
$$

Conclusion,

$$
I_{1}=-\frac{\pi^{2} \cdot(-1)^{m}}{m}
$$

$$
\begin{aligned}
& I_{2}=\int_{0}^{\pi} \underbrace{x^{2}}_{u} \cdot \underbrace{\sin (m x) d x}_{d v}=\left[\begin{array}{c}
u=x^{2} \rightarrow d u=2 x d x \\
d v=\sin (m x) d x \\
v=\frac{-\cos (m x)}{m}
\end{array}\right]= \\
& =-\left.\frac{x^{2} \cdot \cos (m x)}{m}\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{-2 x \cos (m x) d x}{m}= \\
& =-\frac{\pi^{2} \cdot \cos (m \pi)}{m}-\left(-\frac{0^{2} \cdot \cos (m \cdot 0)}{m}\right)+\frac{2}{m} \cdot \int_{0}^{\pi} x \cos (m x) d x= \\
& =-\frac{\pi^{2} \cdot(-1)^{m}}{m}+\frac{2}{m} \cdot \int_{0}^{\pi} \underbrace{x}_{u} \cdot \underbrace{\cos (m x) d x}_{d v}=\left[\begin{array}{c}
u=x \rightarrow d u=d x \\
d v=\cos (m x) d x \\
v=\frac{\sin (m x)}{m}
\end{array}\right]= \\
& =-\frac{\pi^{2} \cdot(-1)^{m}}{m}+\frac{2}{m} \cdot\left(\left.\frac{x \cdot \sin (m x)}{m}\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{\sin (m x)}{m} d x\right)= \\
& =-\frac{\pi^{2} \cdot(-1)^{m}}{m}+\frac{2}{m} \cdot\left(\frac{\pi \cdot \sin (m \pi)}{m}-\frac{0 \cdot \sin (m \cdot 0)}{m}-\frac{1}{m} \int_{0}^{\pi} \sin (m x) d x\right)= \\
& =-\frac{\pi^{2} \cdot(-1)^{m}}{m}+\frac{2}{m} \cdot\left(0-0-\frac{1}{m} \cdot\left(-\left.\frac{\cos (m x)}{m}\right|_{0} ^{\pi}\right)\right)= \\
& =-\frac{\pi^{2} \cdot(-1)^{m}}{m}+\frac{2}{m^{3}} \cdot(\cos (m \pi)-\cos (m \cdot 0))= \\
& =-\frac{\pi^{2} \cdot(-1)^{m}}{m}+\frac{2}{m^{3}} \cdot\left((-1)^{m}-1\right) \\
& I_{2}=-\frac{\pi^{2} \cdot(-1)^{m}}{m}+\frac{2}{m^{3}} \cdot\left((-1)^{m}-1\right)
\end{aligned}
$$

Then,

$$
\begin{gathered}
B_{m}^{(1)}=I_{1}-I_{2}=-\frac{\pi^{2} \cdot(-1)^{m}}{m}-\left(-\frac{\pi^{2} \cdot(-1)^{m}}{m}+\frac{2}{m^{3}} \cdot\left((-1)^{m}-1\right)\right) \rightarrow \\
B_{m}^{(1)}=-\frac{\pi^{2} \cdot(-1)^{m}}{m}+\frac{\pi^{2} \cdot(-1)^{m}}{m}-\frac{2}{m^{3}} \cdot\left((-1)^{m}-1\right) \rightarrow \\
B_{m}^{(1)}=\frac{-2 \cdot\left((-1)^{m}-1\right)}{m^{3}}
\end{gathered}
$$

As we know

$$
\begin{gathered}
\left\{\begin{array}{c}
(-1)^{m}-1=0, m=2 k, k=1,2,3,4, \ldots \\
(-1)^{m}-1=-2, m=2 k-1, k=1,2,3,4, \ldots
\end{array}\right. \\
\left\{\begin{array}{c}
B_{m}^{(1)}=0, m=2 k, k=1,2,3,4, \ldots \\
B_{m}^{(1)}=\frac{4}{m^{3}}, m=2 k-1, k=1,2,3,4, \ldots
\end{array}\right.
\end{gathered}
$$

Conclusion,

$$
\begin{aligned}
& u(x, t)= \sum_{n=1}^{\infty} B_{n}^{(1)} \cos (4 n t) \sin (n x)=\sum_{n=1}^{\infty}\left(\frac{-2 \cdot\left((-1)^{n}-1\right)}{n^{3}}\right) \cos (4 n t) \sin (n x) \\
& u(x, t)=\sum_{k=1}^{\infty}\left(\frac{4}{(2 k-1)^{3}}\right) \cos (4(2 k-1) t) \sin ((2 k-1) x)
\end{aligned}
$$

ANSWER:

$$
u(x, t)=\sum_{k=1}^{\infty}\left(\frac{4}{(2 k-1)^{3}}\right) \cos (4(2 k-1) t) \sin ((2 k-1) x)
$$

