
Answer on Question #76479 – Math – Differential Equations 

Question 

 

Reduce the following PDE to a set of three ODEs by the method of separation of 

variables  
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Solution 

Assume 

𝑉(𝑟, 𝜃, 𝑧) = 𝑅(𝑟)𝛩(𝜃)𝑍(𝑧) 
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Divide through by 𝑉: 
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In the above equation the left-hand side depends on 𝑟 and  𝜃, while the right-hand 

side depends on  𝑧. The only way these two members are going to be equal for all 

values of 𝑟, 𝜃 and 𝑧 is when both of them are equal to a constant. Let us define 

such a constant as  −𝑙2.  
With this choice for the constant, we obtain: 

𝑑2𝑍

𝑑𝑧2
− 𝑙2𝑍 = 0 

The general solution of this equation is: 

𝑍(𝑧) = 𝑎1𝑒𝑙𝑧 + 𝑎2𝑒−𝑙𝑧 

Such a solution, when considering the specific boundary conditions, will allow 

𝑍(𝑧) to go to zero for 𝑧 going to ±∞, which makes physical sense. If we had given 

the constant a value of 𝑙2, we would have had periodic trigonometric functions, 

which do not tend to zero for z going to infinity. 

Once sorted the z-dependency, we need to take care of 𝑟 and  𝜃. 
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Again we are in a situation where the only way a solution can be found for the 

above equation is when both members are equal to a constant. This time we select 

a positive constant, which we call  𝑚2. The equation for 𝛩 becomes, then: 
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𝑑𝜃2
+ 𝑚2𝛩 = 0 

Its general solution can be written as: 

𝛩(𝜃) = 𝑏1 sin(𝑚𝜃) + 𝑏2 cos(𝑚𝜃) 

This solution is well suited to describe the variation for an angular coordinate like 

𝜃. Had we chosen to set both members of equation equal to a negative number, we 

would have ended up with exponential functions with a different value assigned to 

𝛩(𝜃) for each 360 degrees turn, a clear non-physical solution. 

Last to be examined is the r-dependency. We have: 
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The equation (∗) is a well-known equation of mathematical physics called 

parametric Bessel’s equation. With a simple linear transformation of variable, 𝑥 =

(√𝑘2 + 𝑙2)𝑟, equation (∗) is readily changed into a Bessel’s equation: 
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where 𝑅′′ and 𝑅′ indicate first and second derivatives with respect to 𝑥.  
In what follows we will assume that m is a real, non-negative number. 

Linearly independent solutions are typically denoted 𝐽𝑚(𝑥) (Bessel Functions) and 

𝑁𝑚(𝑥) (Neumann Functions). 
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