Answer on Question \#76479 - Math - Differential Equations Question

Reduce the following PDE to a set of three ODEs by the method of separation of variables

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r\left(\frac{\partial V}{\partial r}\right)\right)+\left(\frac{1}{r^{2}}\right)\left(\frac{\partial^{2} V}{\partial \theta^{2}}\right)+\left(\frac{\partial^{2} V}{\partial z^{2}}\right)+\left(k^{2}\right) V=0
$$

Solution

Assume

$$
V(r, \theta, z)=R(r) \Theta(\theta) Z(z)
$$

$\Theta Z\left(\frac{1}{r}\right) \frac{d}{d r}\left(r\left(\frac{d R}{d r}\right)\right)+R Z\left(\frac{1}{r^{2}}\right)\left(\frac{d^{2} \Theta}{d \theta^{2}}\right)+R \Theta\left(\frac{d^{2} Z}{d z^{2}}\right)+\left(k^{2}\right) R \Theta Z=0$
Divide through by V :
$\frac{1}{R}\left(\frac{1}{r}\right) \frac{d}{d r}\left(r\left(\frac{d R}{d r}\right)\right)+\frac{1}{\Theta}\left(\frac{1}{r^{2}}\right)\left(\frac{d^{2} \Theta}{d \theta^{2}}\right)+\frac{1}{Z}\left(\frac{d^{2} Z}{d z^{2}}\right)+k^{2}=0$
$\frac{1}{R}\left(\frac{1}{r}\right) \frac{d R}{d r}+\frac{1}{R} \frac{d^{2} R}{d r^{2}}+\frac{1}{\Theta}\left(\frac{1}{r^{2}}\right)\left(\frac{d^{2} \Theta}{d \theta^{2}}\right)+k^{2}=-\frac{1}{Z}\left(\frac{\partial^{2} Z}{\partial z^{2}}\right)$
In the above equation the left-hand side depends on r and θ, while the right-hand side depends on z. The only way these two members are going to be equal for all values of r, θ and z is when both of them are equal to a constant. Let us define such a constant as $-l^{2}$.
With this choice for the constant, we obtain:

$$
\frac{d^{2} Z}{d z^{2}}-l^{2} Z=0
$$

The general solution of this equation is:

$$
Z(z)=a_{1} e^{l z}+a_{2} e^{-l z}
$$

Such a solution, when considering the specific boundary conditions, will allow $Z(z)$ to go to zero for Z going to $\pm \infty$, which makes physical sense. If we had given the constant a value of l^{2}, we would have had periodic trigonometric functions, which do not tend to zero for z going to infinity.
Once sorted the z-dependency, we need to take care of r and θ.

$$
\begin{gathered}
\frac{1}{R}\left(\frac{1}{r}\right) \frac{d R}{d r}+\frac{1}{R} \frac{d^{2} R}{d r^{2}}+\frac{1}{\Theta}\left(\frac{1}{r^{2}}\right)\left(\frac{d^{2} \Theta}{d \theta^{2}}\right)=-\left(k^{2}+l^{2}\right) \\
\frac{r}{R} \frac{d R}{d r}+\frac{r^{2}}{R} \frac{d^{2} R}{d r^{2}}+\left(k^{2}+l^{2}\right) r^{2}=-\frac{1}{\Theta}\left(\frac{d^{2} \Theta}{d \theta^{2}}\right)
\end{gathered}
$$

Again we are in a situation where the only way a solution can be found for the above equation is when both members are equal to a constant. This time we select a positive constant, which we call m^{2}. The equation for Θ becomes, then:

$$
\frac{d^{2} \Theta}{d \theta^{2}}+m^{2} \Theta=0
$$

Its general solution can be written as:

$$
\Theta(\theta)=b_{1} \sin (m \theta)+b_{2} \cos (m \theta)
$$

This solution is well suited to describe the variation for an angular coordinate like θ. Had we chosen to set both members of equation equal to a negative number, we would have ended up with exponential functions with a different value assigned to $\theta(\theta)$ for each 360 degrees turn, a clear non-physical solution.
Last to be examined is the r-dependency. We have:

$$
\begin{gather*}
\frac{r}{R} \frac{d R}{d r}+\frac{r^{2}}{R} \frac{d^{2} R}{d r^{2}}+\left(k^{2}+l^{2}\right) r^{2}=m^{2} \\
r^{2} \frac{d^{2} R}{d r^{2}}+r \frac{d R}{d r}+\left(\left(k^{2}+l^{2}\right) r^{2}-m^{2}\right) R=0 \tag{*}
\end{gather*}
$$

The equation (*) is a well-known equation of mathematical physics called parametric Bessel's equation. With a simple linear transformation of variable, $x=$ $\left(\sqrt{k^{2}+l^{2}}\right) r$, equation (*) is readily changed into a Bessel's equation:

$$
\begin{gathered}
\frac{d R}{d r}=\frac{d R}{d x} \frac{d x}{d r}=\left(\sqrt{k^{2}+l^{2}}\right) R^{\prime} \\
\frac{d^{2} R}{d r^{2}}=\frac{d}{d x}\left(\left(\sqrt{k^{2}+l^{2}}\right) R^{\prime}\right) \frac{d x}{d r}=\left(k^{2}+l^{2}\right) R^{\prime \prime} \\
\frac{x^{2}}{k^{2}+l^{2}}\left(k^{2}+l^{2}\right) R^{\prime \prime}+\frac{x}{\sqrt{k^{2}+l^{2}}}\left(\sqrt{k^{2}+l^{2}}\right) R^{\prime}+\left(x^{2}-m^{2}\right) R=0 \\
x^{2} R^{\prime \prime}+x R^{\prime}+\left(x^{2}-m^{2}\right) R=0
\end{gathered}
$$

where $R^{\prime \prime}$ and R^{\prime} indicate first and second derivatives with respect to x. In what follows we will assume that m is a real, non-negative number. Linearly independent solutions are typically denoted $J_{m}(x)$ (Bessel Functions) and $N_{m}(x)$ (Neumann Functions).

