Answer on Question \#76455 - Math - Financial Math

Question

Having earned a bonus at his work, Rick placed the money in an investment earning 6.86% compounded monthly. He withdrew $\$ 370$ at the end of every month for the next 4 years.
(a) What was the amount of the bonus?
(b) If he made all of the withdrawals as planned, how much interest was paid?

Solution

a. Assume that x was the amount of the bonus.

In first month Rick saved $x+x^{*} 0.0686=x^{*}(1+0.0686)=x^{*} 1.0686$
In second month : $(x * 1.0686-370){ }^{*} 1.0686=x^{*} 1.0686^{2}-370 * 1.0686$
In third month : $\left(x^{*} 1.0686^{2}-370^{*} 1.0686-370\right) * 1.0686=x^{*} 1.0686^{3}-370 * 1.0686^{2}$ -
$370 * 1.0686=x^{*} 1.0686^{3}-370^{*}\left(1.0686^{2}+1.0686\right)$
In n month $x^{*} 1.0686^{\mathrm{n}}-370^{*} \sum_{i=1}^{n-1} 1.0686^{\mathrm{i}}$
In this way, in 4 year (48 month) Rick saved: $x^{*} 1.0686^{48}-370 * \sum_{i=1}^{47} 1.0686^{i}=0$.
We use the formula to find the sum of the terms of a geometric progression:
$1+\mathrm{g}+\mathrm{g}^{2}+\ldots+\mathrm{g}^{\mathrm{n}}=\mathrm{b} 1 * \frac{\left(\mathrm{~g}^{\mathrm{n}}-1\right)}{g-1}$, где $\mathrm{g}-$ attitude of members, b 1 - first member.
Then $\sum_{i=1}^{47} 1.0686=1.0686^{i} \frac{\left(1.0686^{47}-1\right)}{1.0686-1}=336.61$.
$\mathrm{X}=\frac{370 * 336.61}{1.0686^{48}}=5,155$ dollars.
b. Rick placed $\$ 5,155$. And Rick got $370 * 48=\$ 17,760$. So $\$ 17,760-\$ 5,155=\$ 12,605$ is interest.

Answer:

a. $\$ 5,155$.
b. $\$ 12,605$

