Answer on Question #76455 – Math – Financial Math

Question

Having earned a bonus at his work, Rick placed the money in an investment earning 6.86% compounded monthly. He withdrew \$370 at the end of every month for the next 4 years.

(a) What was the amount of the bonus?

(b) If he made all of the withdrawals as planned, how much interest was paid?

Solution

a. Assume that x was the amount of the bonus.

In first month Rick saved $x+x^*0.0686=x^*(1+0.0686)=x^*1.0686$ In second month : ($x^*1.0686-370$) *1.0686= $x^*1.0686^2-370^*1.0686$ In third month : ($x^*1.0686^2-370^*1.0686-370$)* 1.0686= $x^*1.0686^3-370^*1.0686^2-370^*1.0686=x^*1.0686^3-370^*(1.0686^2+1.0686)$

In n month x*1.0686ⁿ-370* $\sum_{i=1}^{n-1} 1.0686^{i}$

In this way, in 4 year (48 month) Rick saved: $x^* 1.0686^{48} - 370^* \sum_{i=1}^{47} 1.0686^{i} = 0.$

We use the formula to find the sum of the terms of a geometric progression:

1+g+g²+...+gⁿ=b1 * $\frac{(g^n - 1)}{g - 1}$, где g – attitude of members, b1 – first member.

Then
$$\sum_{i=1}^{47} 1.0686^{i} = 1.0686^{i} \frac{(1.0686^{47} - 1)}{1.0686 - 1} = 336.61.$$

 $X = \frac{370 * 336.61}{1.0686^{48}} = 5,155 \text{ dollars.}$

b. Rick placed \$5,155. And Rick got 370*48 = \$17,760. So \$17,760-\$5,155=\$12,605 is interest.

Answer:

a. \$5,155. **b.** \$12,605