Answer on Question \#76409 - Math - Calculus

Question

Find the volume of the solid of revolution obtained by revolving the area under the 3 curve $y=2+x^{\wedge} 3$ between $x=0$ and $x=2$ about the x-axis. Draw a rough sketch.

Solution

On the section from 0 to 2 , the function is continuous, hence a certain integral exists

Volume: $V=\pi \cdot \int_{0}^{2}\left(x^{3}+2\right)^{2} d x=\pi \cdot \int_{0}^{2} x^{6}+4 x^{3}+4=3.14 \cdot\left(\frac{32}{6}+\frac{32}{6}+8\right)=3.14$. $(10.66+8)=58.59$

Answer: V $=58.59$.

