Answer on Question \#76405 - Math - Calculus
 Question

Find the area of a loop of the curve
$r=a \sin 3$ theta

Solution

The curve of the polar equation $r=a \sin 3 \theta$ at $a=1$ is

To find the area of one loop we define the angles at which the loop begins and ends. For this we equate $r=a \sin 3 \theta$ to zero and solve the equation

$$
a \sin 3 \theta=0
$$

with respect to θ. We have $3 \theta=0,3 \theta=\pi, 3 \theta=2 \pi, \ldots$ so we get $\theta=0, \theta=\pi / 3, \theta=$ $2 \pi / 3, \ldots$ Thus, the curve in the first quadrant varies from $\theta=0$ to $\theta=\pi / 3$.
The expression for the area of a figure bounded by a curve $r=r(\theta)$ from $\theta=\alpha$ to $\theta=\beta$ is given by

$$
A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2}(\theta) d \theta
$$

For one loop of the given equation we have

$$
A=\frac{1}{2} \int_{0}^{\pi / 3}(a \sin 3 \theta)^{2} d \theta=\frac{a}{2} \int_{0}^{\pi / 3} \sin ^{2} 3 \theta d \theta
$$

Using the identity $\sin ^{2} \varphi=\frac{1}{2}(1-\cos 2 \varphi)$ we get

$$
A=\frac{a}{2} \int_{0}^{\pi / 3} \frac{1}{2}(1-\cos 6 \theta) d \theta=\frac{a}{4} \int_{0}^{\pi / 3}(1-\cos 6 \theta) d \theta
$$

Integration yields

$$
\begin{gathered}
A=\left.\frac{a}{4}\left(\theta-\frac{1}{6} \sin 6 \theta\right)\right|_{0} ^{\pi / 3} \\
=\frac{a}{4}\left(\frac{\pi}{3}-\frac{1}{6} \sin 2 \pi-\left(0-\frac{1}{6} \sin 0\right)\right) \\
=\frac{a}{4}\left(\frac{\pi}{3}\right) \\
=\frac{\pi a}{12}
\end{gathered}
$$

Answer: the area of a loop is

$$
A=\frac{\pi a}{12}
$$

