Answer on Question \#76404 - Math - Calculus

Question

1. Trace the area between the
the curv'es
$r:=2$
and $r=2 \sin 3 \theta$ and then find this area.

Solution

Let us construct curves: https://www.desmos.com/calculator/inaibaqcmv

The required area is equal to the difference between the area of the circle and the three areas of the region $r=2 \sin 3$ theta on the interval [0; pi / 3].
Then

$$
\begin{gathered}
S=\pi r^{2}-\frac{3}{2} \int_{0}^{\frac{\pi}{3}}(2 \sin 3 \theta)^{2} d \theta=\pi r^{2}-\frac{3}{2} \int_{0}^{\frac{\pi}{3}} 4 \sin ^{2} \theta d \theta \\
S=\pi r^{2}-6 \int_{0}^{\frac{\pi}{3}} \frac{1}{2}(1-\cos 6 \theta) d \theta=\pi r^{2}-3\left(\int_{0}^{\frac{\pi}{3}} d \theta-\int_{0}^{\frac{\pi}{3}} \cos 6 \theta d \theta\right) \\
S=\pi r^{2}-3\left(\theta-\frac{1}{6} \sin 6 \theta\right)
\end{gathered}
$$

After substitution: $\mathrm{r}=2$ and considering $\sin 6 \theta=0$ for $\theta=0$ and $\theta=\frac{\pi}{3}$

$$
S=4 \pi-\pi=3 \pi
$$

Answer: 3π
Answer provided by https://www.AssignmentExpert.com

