Answer on Question \#76401 - Math - Algebra

Question

Trace the curve: $y^{2}(x+1)=x^{2}(3-x)$, clearly stating all the properties used for tracing it.

Solution

1. Symmetry

The curve is not symmetrical about the y-axis.
The curve is symmetrical about the x-axis.

$$
(-y)^{2}(x+1)=x^{2}(3-x)=>y^{2}(x+1)=x^{2}(3-x)
$$

The curve is not symmetrical in opposite quadrants.
The curve is not symmetrical about the line $y=x$.

2. Origin.

The curve passes through the origin

$$
x=0=>y=0
$$

The equations of the tangents to the curve at the origin is obtained by equating the lowest degree terms in x and y in the given equation to zero

$$
\begin{gathered}
y^{2}(x+1)=x^{2}(3-x) \\
x y^{2}+y^{2}=3 x^{2}-x^{3} \\
y^{2}=3 x^{2}=>y= \pm \sqrt{3} x
\end{gathered}
$$

First tangent: $y=\sqrt{3} x$.
Second tangent: $y=-\sqrt{3} x$.
The tangents are real and distinct.
The origin is node.
3. Intersection with the coordinate axes.
$y-$ intercept: $x=0=>y=0, \operatorname{point}(0,0)$
x-intercept: $y=0=>0=3 x^{2}-x^{3}$
$x^{2}(3-x)=0$
$x=0$ or $x=3$
point $(0,0)$, point $(3,0)$
4. First derivative

Take derivative with respect to x of both sides of the equation and use the Chain rule
$\frac{d}{d x}\left(x y^{2}+y^{2}\right)=\frac{d}{d x}\left(3 x^{2}-x^{3}\right)$
$y^{2}+2 x y \frac{d y}{d x}+2 y \frac{d y}{d x}=6 x-3 x^{2}$
$\frac{d y}{d x}=\frac{6 x-3 x^{2}-y^{2}}{2 x y+2 y}$

We have the vertical tangent $x=3$ at the point $(3,0)$.
5. Asymptote(s)
$x y^{2}+y^{2}=3 x^{2}-x^{3}$
Asymptote parallel to y-axis
$x+1=0=>x=-1$
Vertical asymptote: $x=-1$.
There is no horizontal asymptote.
There is no slant (oblique) asymptote.
6. Regions where no part of the curve lies.
$y^{2}(x+1)=x^{2}(3-x)$
$y= \pm \sqrt{\frac{x^{2}(3-x)}{x+1}}$
$\frac{x^{2}(3-x)}{x+1} \geq 0=>-1<x \leq 3$
7. Increasing and decreasing
$\frac{d y}{d x}=\frac{6 x-3 x^{2}-y^{2}}{2 x y+2 y},-1<x \leq 3$
$\frac{d y}{d x}=0=>6 x-3 x^{2}-y^{2}=0, x \neq 0,-1<x \leq 3$
$6 x-3 x^{2}-\frac{x^{2}(3-x)}{x+1}=0$
$6 x^{2}+6 x-3 x^{3}-3 x^{2}-3 x^{2}+x^{3}=0$
$-2 x^{3}+6 x=0$
$x\left(3-x^{2}\right)=0$
We take $x=\sqrt{3}$
$\left.y\right|_{x=\sqrt{3}}= \pm \sqrt{\frac{3(3-\sqrt{3})}{\sqrt{3}+1}}$
$y_{1}=\sqrt{\frac{x^{2}(3-x)}{x+1}}$
If $-1<x<\sqrt{3}, y_{1}$ decreases from ∞
If $\sqrt{3}<x<3, y_{1}$ increases
$y_{2}=-\sqrt{\frac{x^{2}(3-x)}{x+1}}$

If $-1<x<\sqrt{3}, y_{2}$ increases from $-\infty$
If $\sqrt{3}<x<3, y_{2}$ decreases

