

Answer on Question #76401 – Math – Algebra

Question

Trace the curve: $y^2(x + 1) = x^2(3 - x)$, clearly stating all the properties used for tracing it.

Solution

1. Symmetry

The curve is not symmetrical about the y – axis.

The curve is symmetrical about the x – axis.

$$(-y)^2(x + 1) = x^2(3 - x) \Rightarrow y^2(x + 1) = x^2(3 - x)$$

The curve is not symmetrical in opposite quadrants.

The curve is not symmetrical about the line $y = x$.

2. Origin.

The curve passes through the origin

$$x = 0 \Rightarrow y = 0$$

The equations of the tangents to the curve at the origin is obtained by equating the lowest degree terms in x and y in the given equation to zero

$$y^2(x + 1) = x^2(3 - x)$$

$$xy^2 + y^2 = 3x^2 - x^3$$

$$y^2 = 3x^2 \Rightarrow y = \pm\sqrt{3}x$$

First tangent: $y = \sqrt{3}x$.

Second tangent: $y = -\sqrt{3}x$.

The tangents are real and distinct.

The origin is node.

3. Intersection with the coordinate axes.

y – intercept: $x = 0 \Rightarrow y = 0$, point $(0, 0)$

x – intercept: $y = 0 \Rightarrow 0 = 3x^2 - x^3$

$$x^2(3 - x) = 0$$

$$x = 0 \text{ or } x = 3$$

point $(0, 0)$, point $(3, 0)$

4. First derivative

Take derivative with respect to x of both sides of the equation and use the Chain rule

$$\frac{d}{dx}(xy^2 + y^2) = \frac{d}{dx}(3x^2 - x^3)$$

$$y^2 + 2xy\frac{dy}{dx} + 2y\frac{dy}{dx} = 6x - 3x^2$$

$$\frac{dy}{dx} = \frac{6x - 3x^2 - y^2}{2xy + 2y}$$

We have the vertical tangent $x = 3$ at the point $(3, 0)$.

5. Asymptote(s)

$$xy^2 + y^2 = 3x^2 - x^3$$

Asymptote parallel to y -axis

$$x + 1 = 0 \Rightarrow x = -1$$

Vertical asymptote: $x = -1$.

There is no horizontal asymptote.

There is no slant (oblique) asymptote.

6. Regions where no part of the curve lies.

$$y^2(x + 1) = x^2(3 - x)$$

$$y = \pm \sqrt{\frac{x^2(3 - x)}{x + 1}}$$

$$\frac{x^2(3 - x)}{x + 1} \geq 0 \Rightarrow -1 < x \leq 3$$

7. Increasing and decreasing

$$\frac{dy}{dx} = \frac{6x - 3x^2 - y^2}{2xy + 2y}, -1 < x \leq 3$$

$$\frac{dy}{dx} = 0 \Rightarrow 6x - 3x^2 - y^2 = 0, x \neq 0, -1 < x \leq 3$$

$$6x - 3x^2 - \frac{x^2(3 - x)}{x + 1} = 0$$

$$6x^2 + 6x - 3x^3 - 3x^2 - 3x^2 + x^3 = 0$$

$$-2x^3 + 6x = 0$$

$$x(3 - x^2) = 0$$

We take $x = \sqrt{3}$

$$y|_{x=\sqrt{3}} = \pm \sqrt{\frac{3(3 - \sqrt{3})}{\sqrt{3} + 1}}$$

$$y_1 = \sqrt{\frac{x^2(3 - x)}{x + 1}}$$

If $-1 < x < \sqrt{3}$, y_1 decreases from ∞

If $\sqrt{3} < x < 3$, y_1 increases

$$y_2 = -\sqrt{\frac{x^2(3 - x)}{x + 1}}$$

If $-1 < x < \sqrt{3}$, y_2 increases from $-\infty$

If $\sqrt{3} < x < 3$, y_2 decreases

