Answer on Question \#76397 - Math - Calculus

Question:

Trace the curve $y\left(a^{\wedge} 2+x^{\wedge} 2\right)=a^{\wedge} 2 x$

Solution:

We have function

1) Domain:

$x \in R$, so function does not have vertical asymptotes. If $a=0$, then the curve is $y=0$. If $a \neq 0$, then $x^{2}+a^{2} \neq 0$ and the curve will exist.

2) Symmetry:

Function is odd:
$F(-x)=-F(x)$
$\frac{a^{2} x}{a^{2}+x^{2}}=\frac{a^{2}(-x)}{a^{2}+(-x)^{2}}=-\frac{a^{2} x}{a^{2}+x^{2}}$
So the curve is symmetric about the origin.
3) Origin: The curve passes through the origin since the equation does not contain any constant term.
4) Intercept on y-axis: Putting $x=0$ in the equation we get
$y=\frac{a^{2} \cdot 0}{a^{2}+0}=0$
5) Intervals of monotonicity:
$F^{\prime}(x)=\frac{a^{2}\left(a^{2}-x^{2}\right)}{\left(a^{2}+x^{2}\right)^{2}}=\frac{a^{2}(a-x)(a+x)}{\left(a^{2}+x^{2}\right)^{2}}$
Roots: $\left\{\begin{array}{l}a=0 \\ x \neq 0\end{array}\left\{\begin{array}{l}x=a \\ a \neq 0\end{array}\left\{\begin{array}{c}x=-a \\ a \neq 0\end{array}\right.\right.\right.$
So, function decreases when $x \in(-\infty ;-a) \cup(a ;+\infty)$
function increases when $x \in(-a ; a)$
6) Inflection points:
$F^{\prime \prime}(x)=\frac{2 a^{2} x^{3}-6 a^{4} x}{\left(a^{2}+x^{2}\right)^{3}}$
$F^{\prime \prime}(x)=0$
$x=0, x=\sqrt{3} a, x=-\sqrt{3} a$ are inflection points

7) Slant asymptotes:

$y=k x+b$
$k=\lim _{x \rightarrow \infty} \frac{F(x)}{x}$

If there is no limit, then there is no slant asymptotes.
If $k=0$, then $y=b$ is a horizontal asymptote.
$k=\lim _{x \rightarrow \infty} \frac{\frac{a^{2} x}{a^{2}+x^{2}}}{x}=\frac{a^{2} x}{x\left(a^{2}+x^{2}\right)}=\frac{a^{2}}{a^{2}+x^{2}}=0$,
$b=\lim _{x \rightarrow \infty}(F(x)-k x)=\lim _{x \rightarrow \infty}\left(\frac{a^{2} x}{a^{2}+x^{2}}\right)=0$.
Thus, the function has the horizontal asymptote $y=0$.

