Answer on Question #76394 – Math – Algebra Question

Check whether the function f, defined by : f (x)= $\cos 2x + \tan x$, is periodic. If so, find its period. If f is not periodic, define a functioning, such that f — g is periodic.

Solution

Let $x=0 \Rightarrow \cos 0 + \tan 0 = 1+0 = 1$. We solve equation $\cos 2x + \tan x=1$; $\frac{1-\tan^2 x}{1+\tan^2 x} + \tan x=1$; $1-\tan^2 x + \tan x + \tan^3 x= 1 + \tan^2 x$; $\tan x(\tan^2 x - 2\tan x+1)=0 \Rightarrow \tan x=0$, $\tan x=1$ $x=0 \pm m\pi$, $x=45^0 \pm m\pi$, m is integer. So, the period of our function is π . Check it. $f(x+\pi)=f(x)$? $f(x+\pi)=\cos 2(x+\pi) + \tan(x+\pi)=\cos (2x+2\pi) + \tan x=\cos 2x + \tan x=f(x)$. Thus, the function f defined by $f(x) = \cos 2x + \tan x$ is periodic. The period of the function is π .

Answer:

The function f defined by $f(x) = \cos 2x + \tan x$ is periodic.