Answer on Question \#76394 - Math - Algebra
 Question

Check whether the function f, defined by : $\mathrm{f}(\mathrm{x})=\cos 2 \mathrm{x}+\tan \mathrm{x}$, is periodic. If so, find its period. If f is not periodic, define a functioning, such that $\mathrm{f}-\mathrm{g}$ is periodic.

Solution

Let $\mathrm{x}=0 \Rightarrow \cos 0+\tan 0=1+0=1$. We solve equation
$\cos 2 \mathrm{x}+\tan \mathrm{x}=1 ; \frac{1-\tan ^{2} x}{1+\tan ^{2} x}+\tan \mathrm{x}=1 ; 1-\tan ^{2} \mathrm{x}+\tan \mathrm{x}+\tan ^{3} \mathrm{x}=1+\tan ^{2} x ;$
$\tan \mathrm{x}\left(\tan ^{2} \mathrm{x}-2 \tan \mathrm{x}+1\right)=0 \Rightarrow \tan \mathrm{x}=0, \tan \mathrm{x}=1$
$\mathrm{x}=0 \pm m \pi, \mathrm{x}=45^{0} \pm m \pi, \mathrm{~m}$ is integer.
So, the period of our function is π. Check it.
$\mathrm{f}(\mathrm{x}+\pi)=\mathrm{f}(\mathrm{x})$?
$\mathrm{f}(\mathrm{x}+\pi)=\cos 2(\mathrm{x}+\pi)+\tan (\mathrm{x}+\pi)=\cos (2 \mathrm{x}+2 \pi)+\tan \mathrm{x}=\cos 2 \mathrm{x}+\tan \mathrm{x}=\mathrm{f}(\mathrm{x})$.
Thus, the function f defined by $\mathrm{f}(\mathrm{x})=\cos 2 \mathrm{x}+\tan \mathrm{x}$ is periodic. The period of the function is π.

Answer:

The function f defined by $\mathrm{f}(\mathrm{x})=\cos 2 \mathrm{x}+\tan \mathrm{x}$ is periodic.

