Answer on Question \#76367 - Math - Discrete Mathematics Question

Prove that for all integers n with $1 \leq n \leq 10, n^{\wedge} 2-n+11$ is prime.

Solution

Define $f(n)=n^{2}-n+11$.
$f(1)=1^{2}-1+11=11$ is prime.
$f(2)=2^{2}-2+11=13$ is prime.
$f(3)=3^{2}-3+11=17$ is prime.
$f(4)=4^{2}-4+11=23$ is prime.
$f(5)=5^{2}-5+11=31$ is prime.
$f(6)=6^{2}-6+11=41$ is prime.
$f(7)=7^{2}-7+11=53$ is prime.
$f(8)=8^{2}-8+11=67$ is prime.
$f(9)=9^{2}-9+11=83$ is prime.
$f(10)=10^{2}-10+11=101$ is prime, QED.

