Answer on Question #76367 – Math – Discrete Mathematics

Question

Prove that for all integers n with $1 \le n \le 10$, $n^2 - n + 11$ is prime.

Solution

- Define $f(n) = n^2 n + 11$.
- $f(1) = 1^2 1 + 11 = 11$ is prime.
- $f(2) = 2^2 2 + 11 = 13$ is prime.
- $f(3) = 3^2 3 + 11 = 17$ is prime.
- $f(4) = 4^2 4 + 11 = 23$ is prime.
- $f(5) = 5^2 5 + 11 = 31$ is prime.
- $f(6) = 6^2 6 + 11 = 41$ is prime.
- $f(7) = 7^2 7 + 11 = 53$ is prime.
- $f(8) = 8^2 8 + 11 = 67$ is prime.
- $f(9) = 9^2 9 + 11 = 83$ is prime.
- $f(10) = 10^2 10 + 11 = 101$ is prime, QED.