Answer on Question \#76366 - Math - Discrete Mathematics

Question

Prove that for all positive integers $n 3^{n}+7^{n}-2$ is divisible by 8 .

Proof

For $n=1$ the statement is true, since $3^{1}+7^{1}-2=8$ is divisible by 8 .
Let $n>1$. Then we can assume that $n=2 k$ (an even integer) or $n=2 k+1$ (an odd integer) for some positive integer k.

1) Let first $n=2 k$ for some positive integer k. Consider

$$
3^{n}+7^{n}-2=3^{2 k}+7^{2 k}-2=9^{k}+49^{k}-2
$$

By Newton binomial we have that

$$
9^{k}=(8+1)^{k}=8 A+1
$$

and

$$
49^{k}=(6 * 8+1)^{k}=8 B+1
$$

for some positive integers A and B.
Therefore, we have that

$$
3^{n}+7^{n}-2=8 A+1+8 B+1-2=8(A+B) \text { is divisible by } 8
$$

2) Let now $n=2 k+1$ for some positive integer k (in general, the integer k in this case does not coincide with the previous integer k in the case 1)). Consider

$$
3^{n}+7^{n}-2=3^{2 k+1}+7^{2 k+1}-2=3 * 9^{k}+7 * 49^{k}-2
$$

Similarly to case 1) from Newton binomial there exists positive integers C and D, such that

$$
9^{k}=(8+1)^{k}=8 C+1
$$

and

$$
49^{k}=(6 * 8+1)^{k}=8 D+1
$$

Therefore, we have that

$$
3^{n}+7^{n}-2=3(8 C+1)+7(8 D+1)-2=8(3 C+7 D+1) \text { is divisible by } 8 .
$$

All even and odd numbers were analyzed in cases 1), 2), they form the set of integers.
The proof is completed.
Answer provided by https://www.AssignmentExpert.com

