Answer on Question #76358 – Math – Discrete Mathematics

Question

Prove that for all sets A and B: $A \subseteq B \iff A \cup B = B$

Solution

1) $A \subseteq B \Rightarrow A \cup B = B$.

Assume that $A \subseteq B \Rightarrow A \cup B \neq B$. As all elements from B are contained in $A \cup B$, there exists x, such as $\begin{cases} x \in A \cup B \\ x \notin B \end{cases}$. Consequently $\begin{cases} x \in A \\ x \notin B \end{cases}$. But using that fact and $A \subseteq B$ one gets a contradiction. Thus, $A \subseteq B \Rightarrow A \cup B = B$ holds true.

2) $A \subseteq B \leftarrow A \cup B = B$. If not, there exists an element x from A that isn't contained in B. Consequently $x \in A \cup B$ which is equal to B and it comes to contradiction. Thus, $A \subseteq B \leftarrow A \cup B = B$ holds true.

It follows from 1) and 2) that $A \subseteq B \iff A \cup B = B$.