Answer on Question \#76318 - Math - Calculus

Question

Find the indicated limit $\lim _{x \rightarrow-1} f(x)$, if it exists, where

$$
f(x)=\left\{\begin{array}{cc}
4-x, & x<-1 \\
5, & x=-1 \\
x+6, & x>-1
\end{array}\right.
$$

Solution

Let us evaluate the one-sided limits of the function f at the point -1 and compare them.
$\lim _{x \rightarrow-1-0} f(x)=\lim _{x \rightarrow-1-0}(4-x)=5 ; \lim _{x \rightarrow-1+0} f(x)=\lim _{x \rightarrow-1+0}(x+6)=5 ;$
$\lim _{x \rightarrow-1-0} f(x)=\lim _{x \rightarrow-1+0} f(x)=5$, hence $\lim _{x \rightarrow-1} f(x)=5$.
Let us notice that $\lim _{x \rightarrow-1} f(x)=5=f(-1)$, so $f \in C_{\{-1\}}$. Moreover, this function is continuous on the whole number axis.

Answer: $\lim _{x \rightarrow-1} f(x)=5$.

