Answer on Question \#76317 - Math - Discrete Mathematics

Question

Let X be a non-empty set, and let R be an equivalence relation on X. Let C be the set of all equivalence classes of R. So $C=\{A \subseteq X$: such that $A=[x]$ for some $x \in X\}$.

Now, define $f: X \rightarrow C$ by the rule $f(x)=[x]$ for all $x \in X$.
Suppose $X=\{1,2,3,4,5\}$ and that R is an equivalence relation for which $1 R 3,2 R 4$ but $1 R 2,1 R 5$, and 2 R 5 .

Write down the equivalence classes of R and draw a diagram to represent the function f.

Solution

Since $1 R 3,[1]=\{1,3\}$. Since $2 R 4,[2]=\{2,4\}$. Note that $[1] \neq[2]$ because 1 R 2 . Also $5 \notin[1]$ and $5 \notin[2]$ because $1 R 5$, and 2 R 5 . Since R is reflexive, $5 R 5$. Thus $5 \in[5]$. Therefore there are three equivalence classes: [1], [2] and [5].

Checking: $[1] \cup[2] \cup[5]=\{1,3\} \cup\{2,4\} \cup\{5\}=\{1,2,3,4,5\}=X$.

Answer provided by https://www.AssignmentExpert.com

