Answer on Question \#76316 - Math - Calculus

Question

Find the indicated limit, if it exists.
Limit of f as x approaches 0 where f of x equals $5 x$ minus 9 when x is less than 0 and the absolute value of the quantity 2 minus x when x is greater than or equal to 0 .

Solution

Consider

$$
f(x)= \begin{cases}5 x-9, & x<0 \\ |2-x|, & x \geq 0\end{cases}
$$

Let us evaluate the one-sided limits of the function f at the point 0 and compare them.
$\lim _{x \rightarrow 0-0} f(x)=\lim _{x \rightarrow 0-0}(5 x-9)=-9 ; \lim _{x \rightarrow 0+0} f(x)=\lim _{x \rightarrow 0+0}|2-x|=2 ;$
$\lim _{x \rightarrow 0-0} f(x) \neq \lim _{x \rightarrow 0+0} f(x)$, so $\lim _{x \rightarrow 0} f(x)$ does not exist.
Answer: the indicated limit $\lim _{x \rightarrow 0} f(x)$ doesn't exist.

