Answer on Question \#76273 - Math - Differential Equations

Question

If $\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}+\frac{\mathrm{g}(\mathrm{x}-\mathrm{a})}{\mathrm{b}}=0,\left(\mathrm{a}, \mathrm{b}, \mathrm{g}\right.$ being positive constants) and $\mathrm{x}=\mathrm{a}^{\prime}$ and $\frac{d x}{d t}=0$ when $\mathrm{t}=0$, show that $x=a+\left(a^{\prime}-a\right) \cos \left\{\sqrt{ }\left(\frac{g}{b}\right) t\right\}$

Solution

Given, differential equation:

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\frac{g(x-a)}{b}=0 \tag{1}
\end{equation*}
$$

Boundary conditions are given $b y, \mathrm{x}=\mathrm{a}^{\prime}$ and $\frac{d x}{d t}=0$ at $\mathrm{t}=0$.
Now, solution of the equation (1) is

$$
\begin{equation*}
x-a=A \cos \left\{\sqrt{ }\left(\frac{g}{b}\right) t\right\}+B \sin \left\{\sqrt{ }\left(\frac{g}{b}\right) t\right\} \tag{2}
\end{equation*}
$$

At $t=0, x=a^{\prime}$ then from equation (2) we get,

$$
\begin{equation*}
A=a^{\prime}-a \tag{3}
\end{equation*}
$$

Now, take the derivative of equation (2) and we get,

$$
\begin{equation*}
\frac{d x}{d t}=\left[-A \sin \left\{\sqrt{ }\left(\frac{g}{b}\right) t\right\}+B \cos \left\{\sqrt{ }\left(\frac{g}{b}\right) t\right\}\right]\left\{\sqrt{ }\left(\frac{g}{b}\right)\right\} \tag{4}
\end{equation*}
$$

At, $\mathrm{t}=0, \frac{d x}{d t}=0$ then from equation (3) we get,

$$
\mathrm{B}=0 .
$$

Now, put the value of A and B in equation (2) and we get,

$$
x-a=\left(a^{\prime}-a\right) \cos \left\{\sqrt{ }\left(\frac{g}{b}\right) t\right\}
$$

or,

$$
x=a+\left(a^{\prime}-a\right) \cos \left\{\sqrt{ }\left(\frac{g}{b}\right) t\right\}
$$

Answer: $\mathrm{x}=\mathrm{a}+\left(\mathrm{a}^{\prime}-\mathrm{a}\right) \cos \left\{\sqrt{ }\left(\frac{g}{b}\right) t\right\}$.

