Question

Let $X = \{1, 2, 3\}$. Define a relation ~ on P(X) by $A \sim B$ if A and B have the same number of elements.

Prove that $\sim\,$ is an equivalence relation. Write down all equivalence classes of \sim .

Solution

<u>Reflexively</u>: Let $A \in P(x)$. Then $A \sim A$ because the set has an unaltered number of elements.

Symmetric: Let $A \in P(x)$, $B \in P(x)$ and $A \sim B$. Since $A \sim B$, |A| = |B|. Then |B| = |A|. Since |B| = |A|, $B \sim A$.

<u>Transitivity</u>: Let $A \in P(x)$, $B \in P(x)$, $C \in P(x)$, $A \sim B$ and $B \sim C$. Since $A \sim B$, |A| = |B|. Since $B \sim C$, |B| = |C|. Then |A| = |C| because |A| = |B| and |B| = |C|. Since |A| = |C|, $A \sim C$.

> Equivalence classes of ~: $[\emptyset] = \{\emptyset\}$ (zero of elements), $[\{1\}] = \{\{1\}, \{2\}, \{3\}\}$ (one element), $[\{1,2\}] = \{\{1,2\}, \{1,3\}, \{2,3\}\}$ (two elements), $[\{1,2,3\}] = \{\{1,2,3\}\}$ (three elements).