Answer on Question \#76253 - Math - Financial Math

Question

At age 21 Julio begins saving \$1,250 each year until age 35 (15 payments) in an ordinary annuity paying 5.7% annual interest compounded yearly and then leaves his money in the account until age 65 (30 years). His friend Max begins at age 41 saving $\$ 2,500$ per year in the same type of account until age 65 (25 payments). How much does each have in his account at age 65 ?

Solution

In the first year Julio's saving \$1,250+\$1,250*0.057=\$1,250*(1+0.057)=\$1,250*1.057
In the second year Julio's saving $\$ 1,250^{*} 1.057^{*} 1.057=\$ 1,250^{*} 1.057^{2}$
In the nth year Julio's saving $\$ 1,250^{*} 1.057^{n}$
In this way, in 15 year Julio saving: $\sum_{i=1}^{15} 1250 * 1,057$
We use the formula to find the sum of the terms of a geometric progression:
$1+\mathrm{g}+\mathrm{g}^{2}+\ldots+\mathrm{g}^{\mathrm{n}}=\mathrm{b} 1 * \frac{\left(\mathrm{~g}^{\mathrm{n}}-1\right)}{\mathrm{g}-1}$, где g - ratio, b 1 - the first term.
Then $\sum_{i=1}^{15} 1250 * 1,057=1250 * 1.057 * \frac{\left(1,057^{15}-1\right)}{1,057-1}=\$ 30,060$
This amount will be multiplied over 30 years in $1,057^{30}$ time. In this way Julio saving $30,060 * 1.05730=\$ 158,576$.

And Max by the same formulas will receive:
$\sum_{i=1}^{25} 2500^{i} 1,057=2500 * 1,057 * \frac{\left(1,057^{25}-1\right)}{1,057-1}=\$ 139,079$.
Answer: Max saving \$139,079, a Julio \$158,576.

