Answer on Question #76240 – Math – Discrete Mathematics

Question

Let *X* be a non-empty set, and let *R* be an equivalence relation on *X*. Let *C* be the set of all equivalence classes of *R*. So $C = \{A \subseteq X : \text{such that } A = [x] \text{ for some } x \in X\}.$

Now, define $f: X \to C$ by the rule f(x) = [x] for all $x \in X$.

Suppose $X = \{1, 2, 3, 4, 5\}$ and that *R* is an equivalence relation for which 1*R*3, 2*R*4 but 1*R*2, 1*R*5, and 2*R*5.

Write down the equivalence classes of R and draw a diagram to represent the function f.

Solution

Since 1R3, $[1] = \{1,3\}$. Since 2R4, $[2] = \{2,4\}$. Note that $[1] \neq [2]$ because $1\Re 2$. Also $5 \notin [1]$ and $5 \notin [2]$ because $1\Re 5$, and $2\Re 5$. Since *R* is reflexive, 5R5. Thus $5 \in [5]$. Therefore there are three equivalence classes: [1], [2] and [5].

Checking: $[1] \cup [2] \cup [5] = \{1,3\} \cup \{2,4\} \cup \{5\} = \{1,2,3,4,5\} = X$.

Answer provided by https://www.AssignmentExpert.com