Answer on Question \#76238 - Math - Discrete Mathematics.

Question

Let $X=\{1,2,3\}$. Define a relation \sim on $P(X)$ by $A \sim B$ if A and B have the same number of elements.

Prove that \sim is an equivalence relation. Write down all equivalence classes of ~.

Solution

Reflexively: Let $A \in P(x)$. Then $A \sim A$ because the set has an unaltered number of elements.

Symmetric: Let $A \in P(x), B \in P(x)$ and $A \sim B$. Since $A \sim B,|A|=|B|$. Then $|B|=|A|$. Since $|B|=|A|, B \sim A$.

Transitivity: Let $A \in P(x), B \in P(x), C \in P(x), A \sim B$ and $B \sim C$. Since $A \sim B,|A|=|B|$. Since $B \sim C,|B|=|C|$. Then $|A|=|C|$ because $|A|=|B|$ and $|B|=|C|$. Since $|A|=|C|, A \sim C$.

Equivalence classes of ~:
$[\varnothing]=\{\varnothing\}$ (zero of elements),
$[\{1\}]=\{\{1\},\{2\},\{3\}\}$ (one element),
$[\{1,2\}]=\{\{1,2\},\{1,3\},\{2,3\}\}$ (two elements),
$[\{1,2,3\}]=\{\{1,2,3\}\}$ (three elements).

