Answer on Question \#76224 - Math - Discrete Mathematics
 Question

Prove or give a counterexample to the following: For a set A and binary relation R on A, if R is reflexive and symmetric, then R must be transitive as well.

Solution

This statement is not true.
Consider the set $A=\{a, b, c\}$ and the binary relation

$$
R=\{(a, a),(b, b),(c, c),(a, b),(b, a),(b, c),(c, b)\}
$$

on A. Then R is reflexive because $(a, a),(b, b),(c, c) \in R$, i.e. $(x, x) \in R$ for all $x \in A$. This relation is symmetric because if $(x, y) \in R$ then $(y, x) \in R$ for each $x, y \in A$. But R is not transitive: $(a, b) \in R$ and $(b, c) \in R$ but $(a, c) \notin R$.

Answer: R is not transitive.

