Answer on Question #76224 – Math – Discrete Mathematics

Question

Prove or give a counterexample to the following: For a set A and binary relation R on A, if R is reflexive and symmetric, then R must be transitive as well.

Solution

This statement is not true.

Consider the set $A = \{a, b, c\}$ and the binary relation

 $R = \{(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (c, b)\}$

on *A*. Then *R* is reflexive because $(a,a), (b,b), (c,c) \in R$, i.e. $(x,x) \in R$ for all $x \in A$. This relation is symmetric because if $(x, y) \in R$ then $(y, x) \in R$ for each $x, y \in A$. But *R* is not transitive: $(a,b) \in R$ and $(b,c) \in R$ but $(a,c) \notin R$.

Answer: *R* is not transitive.