QUESTION

Prove the following formulas for all positive integers n.
a) $1+2+3+4+5+\ldots+n=\frac{n(n+1)}{2}$
b) $1+4+9+16+25+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
c) $2^{2 n}-1$ is a multiple of 3

SOLUTION

All formulas will be proved by using the method of mathematical induction.
(More information: https://en.wikipedia.org/wiki/Mathematical_induction)
a)

$$
1+2+3+4+5+\ldots+n=\frac{n(n+1)}{2}
$$

1 STEP: Basis of induction

We verify the validity of the formula for $n=1$

$$
\begin{aligned}
& \text { for } n=1: 1+2+3+4+5+\cdots+n=1 \\
& \text { for } n=1: \frac{n(n+1)}{2}=\frac{1 \cdot(1+1)}{2}=\frac{1 \cdot 2}{2}=1
\end{aligned}
$$

Conclusion,

$$
\begin{gathered}
\left\{\begin{array}{c}
\text { for } n=1: 1+2+3+4+5+\cdots+n=1 \\
\text { for } n=1: \frac{n(n+1)}{2}=1
\end{array} \rightarrow\right. \\
1+2+3+4+5+\ldots+n=\frac{n(n+1)}{2}, \text { for } n=1
\end{gathered}
$$

2 STEP: Inductive hypothesis
The formula is true for $1 \leq k \leq n$

$$
1+2+3+4+5+\ldots+k=\frac{k(k+1)}{2}
$$

3 STEP: The inductive step
It is necessary to prove that for $k=n+1$

$$
1+2+3+4+5+\cdots+(n+1)=\frac{(n+1)(n+2)}{2}
$$

In our case,

$$
\begin{gathered}
1+2+3+4+5+\cdots+(n+1)=\underbrace{(1+2+3+4+5+\cdots+n)}_{\frac{n(n+1)}{2}}+(n+1)= \\
=\frac{n(n+1)}{2}+\frac{(n+1)^{\backslash 2}}{1}=\frac{n(n+1)}{2}+\frac{2(n+1)}{2}=\frac{n(n+1)+2(n+1)}{2}=\frac{(n+1)(n+2)}{2}
\end{gathered}
$$

Conclusion,

$$
1+2+3+4+5+\cdots+(n+1)=\frac{(n+1)(n+2)}{2}
$$

Q.E.D.
b)

$$
1+4+9+16+25+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

1 STEP: Basis of induction

We verify the validity of the formula for $n=1$

$$
\text { for } n=1: 1+4+9+16+25+\cdots+n^{2}=1^{2}=1
$$

$$
\text { for } n=1: \frac{n(n+1)(2 n+1)}{6}=\frac{1 \cdot(1+1) \cdot(2 \cdot 1+1)}{6}=\frac{1 \cdot 2 \cdot 3}{6}=1
$$

Conclusion,

$$
\left\{\begin{array}{c}
\text { for } n=1: 1+4+9+16+25+\cdots+n^{2}=1 \\
\text { for } n=1:: \frac{n(n+1)(2 n+1)}{6}=1
\end{array} \rightarrow\right.
$$

$$
1+4+9+16+25+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}, \text { for } n=1
$$

2 STEP: Inductive hypothesis
The formula is true for $1 \leq k \leq n$

$$
1+4+9+16+25+\ldots+k^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

3 STEP: The inductive step
It is necessary to prove that for $k=n+1$

$$
1+4+9+16+25+\cdots+(n+1)^{2}=\frac{(n+1)(n+2)(2(n+1)+1)}{6}
$$

In our case,

$$
\begin{gathered}
1+4+9+16+25+\cdots+(n+1)^{2}=\underbrace{\left(1+4+9+16+25+\cdots+n^{2}\right)}+(n+1)^{2}= \\
=\frac{n(n+1)(2 n+1)}{6}+\frac{(n+1)^{2}{ }^{2} / 6}{1}=\frac{n(n+1)(2 n+1)}{6}+\frac{6(n+1)^{2}}{6}= \\
=\frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6}=\frac{(n+1)(n(2 n+1)+6(n+1))}{6}= \\
=\frac{(n+1)\left(2 n^{2}+n+6 n+6\right)}{6}=\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6}=\frac{(n+1)\left(2 n^{2}+3 n+4 n+6\right)}{6}= \\
=\frac{(n+1)(n(2 n+3)+2(2 n+3))}{6}=\frac{(n+1)(2 n+3)(n+2)}{6}=
\end{gathered}
$$

$$
=\frac{(n+1)(n+2)(2(n+1)+1)}{6}
$$

Conclusion,

$$
1+4+9+16+25+\cdots+(n+1)^{2}=\frac{(n+1)(n+2)(2(n+1)+1)}{6}
$$

Q.E.D.
c)

$$
2^{2 n}-1 \text { is a multiple of } 3
$$

1 STEP: Basis of induction
We verify the validity of the formula for $n=1$

$$
\text { for } n=1: 2^{2 \cdot 1}-1=2^{2}-1=4-1=3 \text { is a multiple of } 3
$$

Conclusion,

$$
2^{2 n}-1 \text { is a multiple of } 3, \text { for } n=1
$$

2 STEP: Inductive hypothesis
The formula is true for $1 \leq k \leq n$

$$
2^{2 k}-1 \text { is a multiple of } 3
$$

3 STEP: The inductive step
It is necessary to prove that for $k=n+1$

$$
2^{2(n+1)}-1 \text { is a multiple of } 3
$$

In our case,

$$
\begin{aligned}
2^{2(n+1)}-1=2^{2 n+2}-1= & 2^{2 n} \cdot 2^{2}-1=2^{2 n} \cdot 4-1=2^{2 n} \cdot(3+1)-1= \\
& =3 \cdot 2^{2 n}+\left(2^{2 n}-1\right)
\end{aligned}
$$

Conclusion,

$$
2^{2(n+1)}-1=3 \cdot 2^{2 n}+\left(2^{2 n}-1\right)
$$

$\left\{\begin{array}{l}3 \cdot 2^{2 n} \text { is a multiple of } 3 \text {, because there is the factor } 3 \\ 2^{2 n}-1 \text { is a multiple of } 3 \text {, by the inductive hypothesis }\end{array} \rightarrow\right.$
If each term is divisible by 3 , then the sum is divisible by 3

$$
2^{2(n+1)}-1=3 \cdot 2^{2 n}+\left(2^{2 n}-1\right) \text { is a multiple of } 3
$$

Q.E.D.

