QUESTION

Solve the partial differential equation

$$
\left(D+D^{\prime}-1\right)\left(D+2 D^{\prime}-3\right) z=4+3 x+6 y
$$

SOLUTION

Let us use some known facts.
Let the given differential equation be

$$
F\left(D, D^{\prime}\right)=f(x, y)
$$

Factorize $F\left(D, D^{\prime}\right)$ into linear factors. Then use the following results:
Rule I. Corresponding to each non-repeated factor $\left(b D-a D^{\prime}-c\right)$, the part of C.F. is taken as

$$
e^{\left(\frac{c x}{b}\right)} \varphi(b y+a x), \text { if } b \neq 0
$$

We now have three particular cases of Rule I:
Rule IA. Take $c=0$ in Rule I. Hence corresponding to each linear factor $\left(b D-a D^{\prime}\right)$, the part of C.F. is

$$
\varphi(b y+a x), \text { if } b \neq 0 .
$$

Rule IB. Take $a=0$ in Rule I. Hence corresponding to each linear factor ($b D-c$), the part of C.F. is

$$
e^{\left(\frac{c x}{b}\right)} \varphi(b y), \text { if } b \neq 0
$$

Rule IC. Take $a=c=0$ and $b=1$ in Rule I. Hence corresponding to each linear factor $(1 \cdot D)$, the part of C.F. is

$$
\varphi(y) .
$$

In our case,

$$
\left(D+D^{\prime}-1\right)\left(D+2 D^{\prime}-3\right) z=4+3 x+6 y \rightarrow z(x, y)=C . F .+P . I .
$$

1 STEP: Let find C.F.

$$
\begin{gathered}
\left\{\begin{array} { c }
{ (D + D ^ { \prime } - 1) z } \\
{ (b D - a D ^ { \prime } - c) z }
\end{array} \rightarrow \left\{\begin{array}{c}
b=1 \\
a=-1 \\
c=1
\end{array} \rightarrow(C . F .)_{1}=e^{\left(\frac{1 \cdot x}{1}\right)} \cdot \varphi_{1}(1 \cdot y+(-1) \cdot x) \rightarrow\right.\right. \\
(C . F .)_{1}=e^{x} \cdot \varphi_{1}(y-x), \text { where } \varphi_{1} \text { is arbitrary function } \\
\left(\begin{array} { c }
{ (D + 2 D ^ { \prime } - 3) z } \\
{ (b D - a D ^ { \prime } - c) z }
\end{array} \rightarrow \left\{\begin{array}{c}
b=1 \\
a=-2 \\
c=3
\end{array} \rightarrow(C . F .)_{2}=e^{\left(\frac{3 \cdot x}{1}\right)} \cdot \varphi_{2}(1 \cdot y+(-2) \cdot x) \rightarrow\right.\right. \\
(C . F .)_{2}=e^{3 x} \cdot \varphi_{2}(y-2 x), \text { where } \varphi_{2} \text { is arbitrary function }
\end{gathered}
$$

Then,

$$
\text { C.F. }=(\text { C.F. })_{1}+(\text { C.F. })_{2} \rightarrow \text { C.F. }=e^{x} \cdot \varphi_{1}(y-x)+e^{3 x} \cdot \varphi_{2}(y-2 x)
$$

2 STEP: Let find P.I.

$$
\begin{gathered}
P . I .=\frac{1}{\left(D+D^{\prime}-1\right)\left(D+2 D^{\prime}-3\right)}(4+3 x+6 y)= \\
=\frac{1}{(-1) \cdot\left(1-\left[D+D^{\prime}\right]\right) \cdot(-3) \cdot\left(1-\left[\frac{D+2 D^{\prime}}{3}\right]\right)}(4+3 x+6 y)= \\
=\frac{1}{3} \cdot\left(1-\left[D+D^{\prime}\right]\right)^{-1} \cdot\left(1-\left[\frac{D+2 D^{\prime}}{3}\right]\right)^{-1}(4+3 x+6 y)= \\
=\left[\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots,|x|<1\right]= \\
=\frac{1}{3} \cdot\left(1+\left[D+D^{\prime}\right]+\left[D+D^{\prime}\right]^{2}+\cdots\right) \cdot\left(1+\left[\frac{D+2 D^{\prime}}{3}\right]+\left[\frac{D+2 D^{\prime}}{3}\right]^{2}+\cdots\right)(4+3 x+6 y)
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1}{3} \cdot\left(1+\left[D+D^{\prime}\right]+\left[\frac{D+2 D^{\prime}}{3}\right]+\cdots\right)(4+3 x+6 y)= \\
=\frac{1}{3} \cdot\left(1+D+D^{\prime}+\frac{D}{3}+\frac{2 D^{\prime}}{3}\right)(4+3 x+6 y)=\frac{1}{3}\left(1+\frac{4 D}{3}+\frac{5 D^{\prime}}{3}\right)(4+3 x+6 y)= \\
=\frac{1}{3} \cdot\left(4+3 x+6 y+\frac{4}{3} \cdot \frac{\partial}{\partial x}(4+3 x+6 y)+\frac{5}{3} \cdot \frac{\partial}{\partial y}(4+3 x+6 y)\right)= \\
=\frac{1}{3} \cdot\left(4+3 x+6 y+\frac{4}{3} \cdot 3+\frac{5}{3} \cdot 6\right)=\frac{1}{3} \cdot(4+3 x+6 y+4+10)= \\
=\frac{1}{3} \cdot(18+3 x+6 y)=6+x+2 y
\end{gathered}
$$

Then,

$$
\text { P.I. }=6+x+2 y
$$

Conclusion,

$$
\begin{gathered}
z(x, y)=\text { C.F. }+ \text { P.I. }=e^{x} \cdot \varphi_{1}(y-x)+e^{3 x} \cdot \varphi_{2}(y-2 x)+6+x+2 y \\
\begin{array}{c}
z(x, y)=e^{x} \cdot \varphi_{1}(y-x)+e^{3 x} \cdot \varphi_{2}(y-2 x)+6+x+2 y \\
\text { where } \varphi_{1} \text { and } \varphi_{2} \text { are arbitrary functions }
\end{array}
\end{gathered}
$$

ANSWER:

$$
\left\{\begin{array}{c}
z(x, y)=e^{x} \cdot \varphi_{1}(y-x)+e^{3 x} \cdot \varphi_{2}(y-2 x)+6+x+2 y \\
\text { where } \varphi_{1} \text { and } \varphi_{2} \text { are arbitrary functions }
\end{array}\right.
$$

Answer provided by https://www.AssignmentExpert.com

