Answer on Question \#76062 - Differential Geometry | Topology

Question

The unit sphere S^{2} defined by:

1) $\sigma(\theta, \varphi)=(\cos \theta \cos \varphi, \cos \theta \sin \varphi, \sin \theta)$
2) $\tilde{\sigma}(\theta, \varphi)=(-\cos \theta \cos \varphi,-\sin \theta,-\cos \theta \sin \varphi)$

Solution

Both functions define a set on the unit sphere, since $x^{2}+y^{2}+z^{2} \equiv 1$ and $\tilde{x}^{2}+\tilde{y}^{2}+\tilde{z}^{2} \equiv 1$. If the domain of the first function is R^{2}, then its image is the whole unit sphere: variable $\frac{\pi}{2}-\varphi$ determines the angle between the Y-axis and the radius vector, and variable θ determines the angle between the projection of the radius vector onto the $X Z$-plane and the X-axis. If the domain of the second function is R^{2}, then it also defines the sphere: $\tilde{x}=-x, \tilde{y}=-z, \tilde{z}=-y$.

Answer

Both these function define the unit sphere S^{2}, if the domain of them is R^{2}.

