Answer on Question \#76039 - Math - Differential Equations
 Question

1.Find the differential equations of the space curve in which the two families of surfaces
$u=x^{\wedge} 2-y^{\wedge} 2=c 1$ and $v=y^{\wedge} 2-z^{\wedge} 2=c 2$ intersect.
2. Find value of n for which the equation $(n-1)^{\wedge} 2 u_{-} x x-y^{\wedge} 2 n u_{-} y y=n y^{\wedge}(2 n-1) u_{-} y$ is parabolic or hyperbolic.

Solution

1. $u=x^{2}-y^{2}=c_{1}, \quad v=y^{2}-z^{2}=c_{2}$.

If ($d x, d y, d z$) are the projections of the tangent vector to the space curve in which the given surfaces intersect, then along any curve of the family, we have:

$$
\begin{aligned}
& d u=0 \rightarrow 2 x d x-2 y d y=0 \rightarrow x d x=y d y \\
& d v=0 \rightarrow 2 y d y-2 z d z=0 \rightarrow y d y=z d z
\end{aligned}
$$

Solving these two equations we get:
$\frac{d x}{y z}=\frac{d y}{x z}=\frac{d z}{x y}$ - differential equations of the space curve.
2. $(n-1)^{2} u_{x x}-y^{2} n u_{y y}=n y^{2 n-1} u_{y}$.
$D=b^{2}-4 a c=0-4(n-1)^{2}\left(-y^{2}\right)=4(n-1)^{2} y^{2}$.
If $n \neq 1, D>0-$ equation is hyperbolic.
If $n=1, D=0$ - equation is parabolic.

