Answer on Question #75995 – Math – Discrete Mathematics

Question

X be a non-empty set and let R be an equivalence relation on X. For each $x \in X$, define $[x] = \{y \in X \mid x R y\}$ to be the equivalence class of x. Here x R y means $(x, y) \in R$.

Suppose that A = [x] and B = [y]. Prove that if $A \cap B \neq \emptyset$, then A = B.

Solution

 $A \cap B \neq \emptyset$. It means that $\exists z \in A \cap B$ i.e. $(z \in A) \land (z \in B) \sim (z R x) \land (z R y)$. Because of the symmetry of the relation $R(x R z) \land (z R y)$. According to transitivity of the relation R we obtain that x R y.

1) We choose and fix $\forall h \in A$. Let's prove that $h \in B$.

 $h \in A \Longrightarrow (h \mathrel{R} x) \land (x \mathrel{R} y) \Longrightarrow h \mathrel{R} y \ i.e. \ h \in B$.

2) We choose and fix $\forall h \in B$. Similarly we can prove that $h \in A$.

 $h \in B \Longrightarrow (h \ R \ y) \land (x \ R \ y) \Longrightarrow (according to symmetry of R) \Longrightarrow$ $\Longrightarrow (h \ R \ y) \land (y \ R \ x) \Longrightarrow (according to transitivity of R) \Longrightarrow h \ R \ x,$ i.e. $h \in A$