Answer on Question \#75995 - Math - Discrete Mathematics

Question

X be a non-empty set and let R be an equivalence relation on X.
For each $x \in X$, define $[x]=\{y \in X \mid x R y\}\}$ to be the equivalence class of x . Here xRy means $(x, y) \in R$.

Suppose that $A=[x]$ and $B=[y]$. Prove that if $A \cap B \neq \emptyset$, then $A=B$.

Solution

$A \cap B \neq \emptyset$. It means that $\exists z \in A \cap B$ i.e. $(z \in A) \wedge(z \in B) \sim(z R x) \wedge(z R y)$. Because of the symmetry of the relation $R(x R z) \wedge(z R y)$. According to transitivity of the relation R we obtain that $x R y$.

1) We choose and fix $\forall h \in A$. Let's prove that $h \in B$.
$h \in A=>(h R x) \wedge(x R y)=>h R y$ i.e. $h \in B$.
2) We choose and fix $\forall h \in B$. Similarly we can prove that $h \in A$. $h \in B=>(h R y) \wedge(x R y)=>($ according to symmetry of $R)=>$ $=>(h R y) \wedge(y R x)=>($ according to transitivity of $R)=>h R x$, i.e. $h \in A$
