Answer on Question \#75930 - Math - Linear Algebra

Question

Given: $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation defined by

$$
T(x, y, z)=(x+y, y, 2 x-2 y+2 z)
$$

To prove or disprove: $(x-1)^{2}(x-2)$ is the characteristic polynomial and find minimal polynomial.

Solution

Consider the map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(x, y, z)=(x+y, y, 2 x-2 y+2 z)
$$

$\therefore \quad$ Matrix representation of T with respect to standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ is as follows

$$
\begin{aligned}
& T(1,0,0)=(1,0,2) \\
& T(0,1,0)=(1,1,-2) \\
& T(0,0,1)=(0,0,2)
\end{aligned}
$$

$\Rightarrow \quad$ Matrix representation $[T]=A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 1 & 1 & -2 \\ 0 & 0 & 2\end{array}\right]$
Now we will check whether $(x-1)^{2}(x-2)$ is a characteristic polynomial.
So, replace x by A and 1 by I, we get

$$
\begin{aligned}
& (A-I)^{2}(A-2 I) \\
\Rightarrow \quad & {\left[\begin{array}{ccc}
0 & 0 & 2 \\
1 & 0 & -2 \\
0 & 0 & 1
\end{array}\right]^{2}\left[\begin{array}{ccc}
-1 & 0 & 2 \\
1 & -1 & -2 \\
0 & 0 & 0
\end{array}\right] } \\
\Rightarrow \quad & {\left[\begin{array}{lll}
0 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 2 \\
1 & -1 & -2 \\
0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

$\Rightarrow \quad\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
Therefore, T satisfies the polynomial.
To find the minimal polynomial, first we will find the polynomial with a linear factor of characteristic polynomial.

So, the product of linear factors is $(x-1)(x-2)$
Replace x by A and 1 by I, we get

$$
\begin{aligned}
& (A-I)(A-2 I) \\
\Rightarrow & {\left[\begin{array}{ccc}
0 & 0 & 2 \\
1 & 0 & -2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 2 \\
1 & -1 & -2 \\
0 & 0 & 0
\end{array}\right] } \\
\Rightarrow \quad & {\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] \neq\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

Hence, the minimal polynomial is same as the characteristic polynomial.
$\therefore \quad m(x)=(x-1)^{2}(x-2)$

